1,648 research outputs found
Sub-100 attoseconds optics-to-microwave synchronization
We use two fiber-based femtosecond frequency combs and a low-noise carrier
suppression phase detection system to characterize the optical to microwave
synchronization achievable with such frequency divider systems. By applying
specific noise reduction strategies, a residual phase noise as low as -120
dBc/Hz at 1 Hz offset frequency from a 11.55 GHz carrier is measured. The
fractional frequency instability from a single optical-to-frequency divider is
1.1E-16 at 1 s averaging down to below 2E-19 after only 1000 s. The
corresponding rms time deviation is lower than 100 attoseconds up to 1000 s
averaging duration.Comment: 4 pages, 3 figure
Progress in Atomic Fountains at LNE-SYRTE
We give an overview of the work done with the Laboratoire National de
M\'etrologie et d'Essais-Syst\`emes de R\'ef\'erence Temps-Espace (LNE-SYRTE)
fountain ensemble during the last five years. After a description of the clock
ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest
developments, we review recent studies of several systematic frequency shifts.
This includes the distributed cavity phase shift, which we evaluate for the FO1
and FOM fountains, applying the techniques of our recent work on FO2. We also
report calculations of the microwave lensing frequency shift for the three
fountains, review the status of the blackbody radiation shift, and summarize
recent experimental work to control microwave leakage and spurious phase
perturbations. We give current accuracy budgets. We also describe several
applications in time and frequency metrology: fountain comparisons,
calibrations of the international atomic time, secondary representation of the
SI second based on the 87Rb hyperfine frequency, absolute measurements of
optical frequencies, tests of the T2L2 satellite laser link, and review
fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally,
we give a summary of the tests of the PHARAO cold atom space clock performed
using the FOM transportable fountain.Comment: 19 pages, 12 figures, 5 tables, 126 reference
Equivalent-voltage approach for modeling low-frequency dispersive effects in microwave FETs
In this paper, a simple and efficient approach for the modeling of low-frequency dispersive phenomena in FETs is proposed. The method is based on the definition of a virtual, nondispersive associated device controlled by equivalent port voltages and it is justified on the basis of a physically-consistent, charge-controlled description of the device. Dispersive effects in FETs are accounted for by means of an intuitive circuit solution in the framework of any existing nonlinear dynamic model. The new equivalent-voltage model is identified on the basis of conventional measurements carried out under static and small signal dynamic operating conditions. Nonlinear experimental tests confirm the validity of the proposed approach
OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation.
Hearing impairment is the second most prevalent clinical feature after optic atrophy in Dominant Optic Atrophy associated with mutations in the OPA1 gene. In this study we characterized the hearing dysfunction in OPA1-linked disorders and provided effective rehabilitative options to improve speech perception.
We studied two groups of OPA1 subjects, one comprising 11 patients (7 males; age range 13-79 years) carrying OPA1 mutations inducing haploinsufficiency, the other, 10 subjects (3 males; age range 5-58 years) carrying OPA1 missense mutations. Both groups underwent audiometric assessment with pure tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded through transtympanic electrocochleography from the group of patients harboring OPA1 missense mutations and were compared to recordings obtained from 20 normally-hearing controls and from 19 subjects with cochlear hearing loss. Eight patients carrying OPA1 missense mutations underwent cochlear implantation. Speech perception measures and electrically-evoked auditory nerve and brainstem responses were obtained after one year of cochlear implant use.
Nine out of 11 patients carrying OPA1 mutations inducing haploinsufficiency had normal hearing function. In contrast, all but one subject harboring OPA1 missense mutations displayed impaired speech perception, abnormal brainstem responses and presence of otoacoustic emissions consistent with auditory neuropathy. In electrocochleography recordings, cochlear microphonic had enhanced amplitudes while summating potential showed normal latency and peak amplitude consistent with preservation of both outer and inner hair cell activities. After cancelling the cochlear microphonic, the synchronized neural response seen in both normally-hearing controls and subjects with cochlear hearing loss was replaced by a prolonged, low-amplitude negative potential that decreased in both amplitude and duration during rapid stimulation consistent with neural generation. The use of cochlear implant improved speech perception in all but one patient. Brainstem potentials were recorded in response to electrical stimulation in five subjects out of six, whereas no compound action potential was evoked from the auditory nerve through the cochlear implant.
These findings indicate that underlying the hearing impairment in patients carrying OPA1 missense mutations is a disordered synchrony in auditory nerve fiber activity resulting from neural degeneration affecting the terminal dendrites. Cochlear implantation improves speech perception and synchronous activation of auditory pathways by by-passing the site of lesion
Statistical characterization of residual noise in the low-rank approximation filter framework, general theory and application to hyperpolarized tracer spectroscopy
The use of low-rank approximation filters in the field of NMR is increasing
due to their flexibility and effectiveness. Despite their ability to reduce the
Mean Square Error between the processed signal and the true signal is well
known, the statistical distribution of the residual noise is still undescribed.
In this article, we show that low-rank approximation filters are equivalent to
linear filters, and we calculate the mean and the covariance matrix of the
processed data. We also show how to use this knowledge to build a maximum
likelihood estimator, and we test the estimator's performance with a Montecarlo
simulation of a 13C pyruvate metabolic tracer. While the article focuses on NMR
spectroscopy experiment with hyperpolarized tracer, we also show that the
results can be applied to tensorial data (e.g. using HOSVD) or 1D data (e.g.
Cadzow filter).Comment: 26 pages, 7 figure
Tests of relativity using a microwave resonator
The frequencies of a cryogenic sapphire oscillator and a hydrogen maser are
compared to set new constraints on a possible violation of Lorentz invariance.
We determine the variation of the oscillator frequency as a function of its
orientation (Michelson-Morley test) and of its velocity (Kennedy-Thorndike
test) with respect to a preferred frame candidate. We constrain the
corresponding parameters of the Mansouri and Sexl test theory to and which is equivalent to the best previous result for the
former and represents a 30 fold improvement for the latter.Comment: 8 pages, 2 figures, submitted to Physical Review Letters (October 3,
2002
Bridging the gap between micro and macro data: Ontologies to the rescue
We describe a new methodology for modeling aggregate data and explicitly connecting them to the individual-level data from which aggregates are generated. The approach makes use of OWL2 ontologies that formalize both the application domain and multidimensional constructs, such as data cubes, measures, dimensions, and hierarchies. This contribution stems from a collaboration among ISTAT, Sapienza University of Rome, and OBDA Systems, within the project INTERSTAT
- âŠ