2,201 research outputs found

    Locally Adaptive Frames in the Roto-Translation Group and their Applications in Medical Imaging

    Get PDF
    Locally adaptive differential frames (gauge frames) are a well-known effective tool in image analysis, used in differential invariants and PDE-flows. However, at complex structures such as crossings or junctions, these frames are not well-defined. Therefore, we generalize the notion of gauge frames on images to gauge frames on data representations U:Rd⋊Sd−1→RU:\mathbb{R}^{d} \rtimes S^{d-1} \to \mathbb{R} defined on the extended space of positions and orientations, which we relate to data on the roto-translation group SE(d)SE(d), d=2,3d=2,3. This allows to define multiple frames per position, one per orientation. We compute these frames via exponential curve fits in the extended data representations in SE(d)SE(d). These curve fits minimize first or second order variational problems which are solved by spectral decomposition of, respectively, a structure tensor or Hessian of data on SE(d)SE(d). We include these gauge frames in differential invariants and crossing preserving PDE-flows acting on extended data representation UU and we show their advantage compared to the standard left-invariant frame on SE(d)SE(d). Applications include crossing-preserving filtering and improved segmentations of the vascular tree in retinal images, and new 3D extensions of coherence-enhancing diffusion via invertible orientation scores

    A PDE Approach to Data-driven Sub-Riemannian Geodesics in SE(2)

    Get PDF
    We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-Riemannian (SR) geodesics in the roto-translation group SE(2)=R2⋊S1SE(2) = \mathbb{R}^2 \rtimes S^1 with a metric tensor depending on a smooth external cost C:SE(2)→[δ,1]\mathcal{C}:SE(2) \to [\delta,1], δ>0\delta>0, computed from image data. The method consists of a first step where a SR-distance map is computed as a viscosity solution of a Hamilton-Jacobi-Bellman (HJB) system derived via Pontryagin's Maximum Principle (PMP). Subsequent backward integration, again relying on PMP, gives the SR-geodesics. For C=1\mathcal{C}=1 we show that our method produces the global minimizers. Comparison with exact solutions shows a remarkable accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell points and cusp points, which we again verify for the uniform cost case C=1\mathcal{C}=1. Regarding image analysis applications, tracking of elongated structures in retinal and synthetic images show that our line tracking generically deals with crossings. We show the benefits of including the sub-Riemannian geometry.Comment: Extended version of SSVM 2015 conference article "Data-driven Sub-Riemannian Geodesics in SE(2)

    Narrowband Photon Pair Source for Quantum Networks

    Full text link
    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)−1^{-1} is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks

    Quantum random number generation for 1.25 GHz quantum key distribution systems

    Full text link
    Security proofs of quantum key distribution (QKD) systems usually assume that the users have access to source of perfect randomness. State-of-the-art QKD systems run at frequencies in the GHz range, requiring a sustained GHz rate of generation and acquisition of quantum random numbers. In this paper we demonstrate such a high speed random number generator. The entropy source is based on amplified spontaneous emission from an erbium-doped fibre, which is directly acquired using a standard small form-factor pluggable (SFP) module. The module connects to the Field Programmable Gate Array (FPGA) of a QKD system. A real-time randomness extractor is implemented in the FPGA and achieves a sustained rate of 1.25 Gbps of provably random bits.Comment: 6 pages, 8 figure

    High efficiency coupling of photon pairs in practice

    Full text link
    Multi-photon and quantum communication experiments such as loophole-free Bell tests and device independent quantum key distribution require entangled photon sources which display high coupling efficiency. In this paper we put forward a simple quantum theoretical model which allows the experimenter to design a source with high pair coupling efficiency. In particular we apply this approach to a situation where high coupling has not been previously obtained: we demonstrate a symmetric coupling efficiency of more than 80% in a highly frequency non-degenerate configuration. Furthermore, we demonstrate this technique in a broad range of configurations, i.e. in continuous wave and pulsed pump regimes, and for different nonlinear crystals

    Improving Fiber Alignment in HARDI by Combining Contextual PDE Flow with Constrained Spherical Deconvolution

    Get PDF
    We propose two strategies to improve the quality of tractography results computed from diffusion weighted magnetic resonance imaging (DW-MRI) data. Both methods are based on the same PDE framework, defined in the coupled space of positions and orientations, associated with a stochastic process describing the enhancement of elongated structures while preserving crossing structures. In the first method we use the enhancement PDE for contextual regularization of a fiber orientation distribution (FOD) that is obtained on individual voxels from high angular resolution diffusion imaging (HARDI) data via constrained spherical deconvolution (CSD). Thereby we improve the FOD as input for subsequent tractography. Secondly, we introduce the fiber to bundle coherence (FBC), a measure for quantification of fiber alignment. The FBC is computed from a tractography result using the same PDE framework and provides a criterion for removing the spurious fibers. We validate the proposed combination of CSD and enhancement on phantom data and on human data, acquired with different scanning protocols. On the phantom data we find that PDE enhancements improve both local metrics and global metrics of tractography results, compared to CSD without enhancements. On the human data we show that the enhancements allow for a better reconstruction of crossing fiber bundles and they reduce the variability of the tractography output with respect to the acquisition parameters. Finally, we show that both the enhancement of the FODs and the use of the FBC measure on the tractography improve the stability with respect to different stochastic realizations of probabilistic tractography. This is shown in a clinical application: the reconstruction of the optic radiation for epilepsy surgery planning

    Approximation and inference methods for stochastic biochemical kinetics-a tutorial review

    Get PDF
    Stochastic fluctuations of molecule numbers are ubiquitous in biological systems. Important examples include gene expression and enzymatic processes in living cells. Such systems are typically modelled as chemical reaction networks whose dynamics are governed by the chemical master equation. Despite its simple structure, no analytic solutions to the chemical master equation are known for most systems. Moreover, stochastic simulations are computationally expensive, making systematic analysis and statistical inference a challenging task. Consequently, significant effort has been spent in recent decades on the development of efficient approximation and inference methods. This article gives an introduction to basic modelling concepts as well as an overview of state of the art methods. First, we motivate and introduce deterministic and stochastic methods for modelling chemical networks, and give an overview of simulation and exact solution methods. Next, we discuss several approximation methods, including the chemical Langevin equation, the system size expansion, moment closure approximations, time-scale separation approximations and hybrid methods. We discuss their various properties and review recent advances and remaining challenges for these methods. We present a comparison of several of these methods by means of a numerical case study and highlight some of their respective advantages and disadvantages. Finally, we discuss the problem of inference from experimental data in the Bayesian framework and review recent methods developed the literature. In summary, this review gives a self-contained introduction to modelling, approximations and inference methods for stochastic chemical kinetics

    Model Reduction for the Chemical Master Equation: an Information-Theoretic Approach

    Get PDF
    The complexity of mathematical models in biology has rendered model reduction an essential tool in the quantitative biologist's toolkit. For stochastic reaction networks described using the Chemical Master Equation, commonly used methods include time-scale separation, the Linear Mapping Approximation and state-space lumping. Despite the success of these techniques, they appear to be rather disparate and at present no general-purpose approach to model reduction for stochastic reaction networks is known. In this paper we show that most common model reduction approaches for the Chemical Master Equation can be seen as minimising a well-known information-theoretic quantity between the full model and its reduction, the Kullback-Leibler divergence defined on the space of trajectories. This allows us to recast the task of model reduction as a variational problem that can be tackled using standard numerical optimisation approaches. In addition we derive general expressions for the propensities of a reduced system that generalise those found using classical methods. We show that the Kullback-Leibler divergence is a useful metric to assess model discrepancy and to compare different model reduction techniques using three examples from the literature: an autoregulatory feedback loop, the Michaelis-Menten enzyme system and a genetic oscillator

    Enhancement of K+ conductance improves in vitro the contraction force of skeletal muscle in hypokalemic periodic paralysis

    Get PDF
    An abnormal ratio between Na+ and K+ conductances seems to be the cause for the depolarization and paralysis of skeletal muscle in primary hypokalemic periodic paralysis. Recently we have shown that the k+ channel opener cromakalim hyperpolarizes mammalian skeletal muscle fibers. Now we have studied the effects of this drug on the twitch force of muscle biopsies from normal and diseased human skeletal muscle. Cromakalim had little effect on the twitch force of normal muscle whereas it strongly improved the contraction force of fibers from patients suffering from hypokalemic periodic paralysis. Recordings of intracellular K+ and Cl- activities in human muscle and isolated rat soleus muscle support the view that cromakalim enhances the membrane K+ conductance (gK+). These data indicate that K+ channel openers may have a beneficial effect in primary hypokalemic periodic paralysis

    Comparison of Bond Character in Hydrocarbons and Fullerenes

    Full text link
    We present a comparison of the bond polarizabilities for carbon-carbon bonds in hydrocarbons and fullerenes, using two different models for the fullerene Raman spectrum and the results of Raman measurements on ethane and ethylene. We find that the polarizabilities for single bonds in fullerenes and hydrocarbons compare well, while the double bonds in fullerenes have greater polarizability than in ethylene.Comment: 7 pages, no figures, uses RevTeX. (To appear in Phys. Rev. B.
    • …
    corecore