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Abstract
The complexity of mathematical models in biology has rendered model reduction an essential tool in the quan-
titative biologist’s toolkit. For stochastic reaction networks described using the Chemical Master Equation,
commonly used methods include time-scale separation, the Linear Mapping Approximation and state-space
lumping. Despite the success of these techniques, they appear to be rather disparate and at present no general-
purpose approach to model reduction for stochastic reaction networks is known. In this paper we show that
most common model reduction approaches for the Chemical Master Equation can be seen as minimising a
well-known information-theoretic quantity between the full model and its reduction, the Kullback-Leibler
divergence defined on the space of trajectories. This allows us to recast the task of model reduction as a
variational problem that can be tackled using standard numerical optimisation approaches. In addition we
derive general expressions for the propensities of a reduced system that generalise those found using classical
methods. We show that the Kullback-Leibler divergence is a useful metric to assess model discrepancy and
to compare different model reduction techniques using three examples from the literature: an autoregulatory
feedback loop, the Michaelis-Menten enzyme system and a genetic oscillator.

Keywords: Chemical Master Equation ·Model Reduction · Systems Biology

1 Introduction

Stochastic biochemical reaction networks such as those involved in gene expression, immune re-
sponse or cellular signalling [1–4] are often described using the Chemical Master Equation (CME).
The CME describes the dynamics of biochemical processes on a mesoscopic level, viewing them as
a discrete collection of molecules interacting and undergoing reactions stochastically; as such it is
generally considered more accurate than continuum approximations such as rate equations and the
Chemical Langevin Equation [4]. Despite its explanatory power, the CME poses significant analyt-
ical and computational difficulties to modellers that have limited its use in practice. Closed-form
solutions to the CME are difficult to obtain and are only known for a small number of biologically
relevant systems, and solving the CME numerically requires using approximations such as the Finite
State Projection (FSP) [5]. Numerical approaches tend to scale poorly with the number of species
and reactions present in a system, and as a result there is significant interest in finding ways to sim-
plify a description of a stochastic reaction network that make it easier to analyse and study - this is
the goal of model reduction.

Model reduction for deterministic and continuum-limit models in biology is an active research
topic [6, 7], but very few existing methods can be applied to the discrete, stochastic setting of the
CME. The Quasi-Steady State Approximation (QSSA) is perhaps the best known technique, first
considered in the stochastic case in [8]. Here the system is partitioned into ‘slow‘ and ‘fast‘ species
such that the fast species evolve very quickly on the timescale of the slow species. On the slow
timescale the states of the fast species can therefore be approximated by their steady-state value
(conditioned on the slow species), effectively allowing a description of the system in terms of the
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slow species only. By its nature the QSSA is only applicable to systems with a clear separation of
timescales between species, the existence of which cannot always be established. The QSSA for
stochastic systems is generally believed to require more stringent conditions than in the deterministic
case, but the exact validity conditions are not well-understood [9–14]. Recent work [15] has analysed
a modification of the QSSA, the total QSSA (tQSSA), in systems involving reversible binding of
molecules and shown that it has a wide range of applicability in the stochastic case.

Similar to the QSSA is the Quasiequilibrium Approximation (QEA), which was first considered
in [16, 17] for stochastic reaction networks. Here the reaction network is decomposed into ‘slow’
and ‘fast’ reactions, and the fast reactions are assumed to equilibrate rapidly on the timescale of
the slow reactions. Similar to the QSSA, the QEA can be used to reduce the number of species
and reactions in a system, but it relies on the existence of a clear timescale separation between
reactions, which is not always present for large systems with many distinct reactions. Much like the
QSSA, the validity of the QEA for systems without the appropriate timescale separation has not been
generally established, and from the asymptotic nature of the descriptions it is not usually possible
to quantify the approximation error. Despite this, both the QSSA and the QEA are by far the most
commonly used model-reduction technique for chemical reaction networks owing to their physical
interpretability and analytical tractability, most famously in the Michaelis-Menten model of enzyme
kinetics.

A distinct approach for model reduction with the Chemical Master Equation is state-space lump-
ing, which originates from the theory of finite Markov chains, see e.g. [18]. Here different states
in a system are lumped together such that the coarse-grained system is still Markovian and can be
modelled using the CME. For a typical biochemical reaction network it may not be possible to per-
form any nontrivial lumping while preserving Markovianity, whence approximate lumping methods
have been considered e.g. in [19–21]. Here the coarse-grained system is approximated by a Markov
process, and the approximation error quantified using the KL divergence between the original model
and a lift of the approximation to the state space of the original model. State-space lumping for the
CME often occurs in the context of the QEA, as states related by fast reactions are effectively lumped
together, or averaged [22–24]. For this reason we will not consider this approach separately, although
many of our considerations, such as the optimal form of the lumped propensity functions, extend to
state-space lumping.

Finally, a more recent model reduction technique specifically for gene expression systems is the
Linear Mapping Approximation (LMA) [25]. The LMA replaces bimolecular reactions of the form
G + P → (. . .), where G is a binary species such as a gene, by a linear approximation where P is
replaced by its mean conditioned on [G] = 1. While the LMA does not reduce the number of species
or reactions, reaction networks with linear reactions are generally easier to analyse: their moments
can be computed exactly, and closed-form solutions are known for many cases [26–29].

At a first glance these approaches - timescale separation, state space lumping and the Linear
Mapping Approximation - seem rather disparate, and it is unclear what, if any, relationships exist
between them. In this paper we show that all of these methods can be viewed as minimising a natural
information theoretic quantity, the Kullback-Leibler (KL) divergence, between the full and reduced
models. In particular they can be seen as maximal likelihood approximations of the full model, and
one can assess the quality of the approximation in terms of the resulting KL divergence. Based on
these results we show how the KL divergence can be estimated and minimised numerically, there-
fore providing an automated method to choose between different candidate reductions of a given
model in situations where none of the above model reduction techniques are classically applicable.
In its full generality, the Chemical Master Equation describing a reduced model can be obtained by
marginalisation of the original CME, and hence our approach recovers the method based on condi-
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tional expectations presented in [30].
The KL divergences we consider in this paper are computed on the space of trajectories, and as

such include both static information and dynamical information, in contrast to purely distribution-
matching approaches. The KL divergence and similar information-theoretic measures between continuous-
time Markov chains have previously been considered in [31, 32] in the context of variational inference
(with the true model and the approximation reversed compared to our approach), in [33, 34] to obtain
approximate non-Markovian reductions, in [35] to analyse information flow for stochastic reaction
networks and in [36] in quantifying model discrepancy for Markovian agent-based models.

In Section 2 we introduce the mathematical framework in which we consider model reduction for
the Chemical Master Equation, based on KL divergences between continuous-time Markov chains.
We show how the KL divergence can be minimised analytically in some important cases, recover-
ing standard results in the literature and providing a mathematical justification for commonly used
mean-field arguments as in the QSSA, the QEA and the LMA. We furthermore provide numerical al-
gorithms for estimating as well as minimising the KL divergence in cases where analytical solutions
are not available. In Section 3 we illustrate the use of KL divergences as a metric for approximation
quality using three biologically relevant examples: an autoregulatory feedback loop exhibiting criti-
cal behaviour, Michaelis-Menten enzyme kinematics, where we reanalyse the QSSA and the QEA,
and an oscillatory genetic feedback system taken from [11], for which we compare different reduc-
tions using our approach. Finally in Section 4 we discuss our observations and how our approach
could be used as a stepping-stone towards automated reduction of complex biochemical reaction
pathways.

2 Methods

2.1 Stochastic Reaction Networks

The Chemical Master Equation describes a biochemical reaction network as a stochastic process on
a discrete state space X. We will use the letter q to denote such a stochastic process, which for
the purposes of this paper can be seen as a probability distribution over trajectories on X. For a
biochemical reaction network the state space will be X = Ns, where s is the number of species in the
system: every state consist of a tuple n = (n1, . . . , ns) of s integers describing the abundances of each
species.

Since the model q can consist of many species interacting in complicated ways, we often want to
find a reduction that is more tractable, yet approximates q as closely as possible. The reduced model,
which we will call p, should be of the same form as q, i.e. described by the CME, but will typically
involve fewer species and simpler reactions. In particular p can be defined on a lower-dimensional
state space X̃. A state n in the original model can then be described by its projection ñ onto this
lower-dimensional space, together with some unobserved components, which we will denote z. See
Fig. 1a and b for an illustration.

In this paper we assume that the basic structure of p is known a priori, i.e. the species and reac-
tions we wish to retain are fixed. Our approach to model reduction therefore consists in finding the
optimal propensity functions for the reduced model, and we shall see how this can give rise to various
known approximations such as the QSSA, the QEA or the LMA depending on what reductions are
performed. We will return to the related problem of choosing the structure of the reduced model p in
the discussion.

The original model q defines a probability distribution over trajectories in X, and projecting each
trajectory onto the chosen reduced state space we get the (exact) projection of q onto this space,
which we denote q̃ (Fig. 1a). This is a stochastic process on X̃ that is generally not Markovian and
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Figure 1: Model reduction for the Chemical Master Equation. (a) Model reduction approximates
a high-dimensional model q by a lower-dimensional version. Since the direct projection q̃ of the
full model is not easy to describe, we approximate it using a family of tractable candidate models:
in this paper, the approximation p is described by the CME. (b) Comparison of the full state space
of a system, consisting of two species S 1 and S 2, and a reduced state space containing S 1 only.
Species which are not deemed essential can be discarded in the reduction and become unobserved
variables. The dynamics of the original system involves all species, whereas the reduced model aims
at an effective description only in terms of the reduced species. (c) Sample trajectory for a one-
dimensional system, defined by the sequence n0, n1, . . . of states visited and the corresponding jump
times t1, t2, ... (or alternatively the waiting times τ0, τ1, ...).

thus cannot be modelled using the CME. We aim to find a tractable approximation p to q̃ that can be
described using the CME, and we will do this by minimising the KL divergence KL(q̃ ‖ p) between
the two models on the space of trajectories. Several well-known examples of model reduction for the
CME are illustrated in Fig. 2.

Jumps in q come in two kinds: those that affect the observed species ñ, which we will call
visible jumps, and those that only change z, which we call hidden. The jumps in q̃ correspond to
visible jumps in q. In the context of the CME, jumps are typically grouped into reactions with fixed
stoichiometry, often also called reaction channels, and we can similarly distinguish visible and hidden
reactions in q. We will always assume that different reactions have different stoichiometries, so that
every jump in q and p corresponds to a unique reaction. Reactions with the same stoichiometry can
always be combined by summing their propensities.

We introduce some more notation at this point, which is summarised in Table 1 and illustrated in
Fig. 1c. A single realisation, or trajectory, of q is defined by the sequence of states n0, n1, n2, . . . ∈ X

visited and jump times 0 < t1 < t2 < . . .. We will write n[0,T ] = {n(t)}0≤t≤T for a trajectory, where
n(0) = n0 and n(t) = ni for ti ≤ t < ti+1, and denote by τi = ti+1 − ti the waiting times between jumps.

For a continuous-time Markov process p, e.g. one defined using the CME, we denote the transi-
tion rate from state n to m , n by pm←n. We let p←n =

∑
m,n pm←n be the total transition rate out of

n. The transition probabilities at n are then given by pm|n = pm←n/p←n. For completeness we define
pn|n := 0.
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Figure 2: Common model reduction techniques for the Chemical Master Equation. (a) The QSSA
eliminates intermediate species which evolve on a faster timescale than others, replacing them by
their steady-state values. In the case of the pictured Michaelis-Menten enzyme system this is often
applied to the enzyme E and the substrate-enzyme complex ES . (b) The QEA is an analogue of the
QSSA that can be applied when a reaction and its reverse equilibrate rapidly on timescales of interest.
This can occur e.g. when a gene switches rapidly between states. (c) The LMA replaces protein-
gene binding reactions by effective unimolecular reactions, where the concentration of proteins is
approximated by its mean conditioned on the gene state. While this does not remove any species
from the system, it considerably simplifies the propensities of the reactions.

2.2 Minimising the KL Divergence

The Kullback-Leibler Divergence between two distributions q̃ and p is defined as

KL(q̃ ‖ p) =

∫
q̃(x) log

q̃(x)
p(x)

dx = Eq̃
[
log q̃(x)

]
− Eq̃

[
log p(x)

]
(1)

= Eq̃
[
log q̃

]
+ H(q̃; p) (2)

where the quantity H(q̃; p) is known as the cross-entropy:

H(q̃; p) = −Eq̃
[
log p(x)

]
(3)

Minimising the KL divergence with respect to p is therefore equivalent to minimising the cross-
entropy. Alternatively, it is equivalent to maximising the average log-likelihood under p of samples
drawn from q̃, which is a statistical inference problem.

In this paper samples from q̃ and p are trajectories. We therefore need to compute the log-
likelihood of an arbitrary trajectory n[0,T ] under p, which by assumption is a stochastic reaction
network described by the CME. In Appendix A we show that the log-likelihood for a trajectory

Symbol Explanation Symbol Explanation

q Full model qm←n Transition rate
q̃ Projected model q←n Total transition rate
p Reduced model qm | n Transition probability

n Full state vector q0(n) Initial distribution
ñ Reduced state vector qt(n) Single-time marginal
z Unobserved state vector

Table 1: Notation used in this paper.
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visiting the states n0, n1, . . . , nk with waiting times τ0, τ1, . . . , τk is given by

log p(n[0,T ]) = log p0(n0) −
k∑

i=0

τi p←ni +

k∑
i=1

log pni←ni−1 . (4)

Note that computing the likelihood of a fully observed trajectory is easier than computing the
likelihood of a trajectory sampled at discrete time points, which is the form of data typically observed
in biological experiments. The difference is that computing the likelihood in the latter case requires
integrating over all possible courses of the trajectory between observations; this integral is computed
implicitly by the Chemical Master Equation, which is generally hard to solve. For a fully observed
trajectory there are no hidden variables to integrate out, which considerably simplifies the task of
computing likelihoods.

Returning to the problem of minimizing the KL divergence (1), or equivalently the cross entropy,
we need to compute expectations over q̃ that are not in general available in closed form. It is eas-
ier to approximate these expectations by simulating N trajectories ñ(i)

[0,T ], i = 1, . . . ,N, from q̃ and
computing the estimate

Ĥ(q̃; pθ) = −
1
N

N∑
i=1

log p(ñ(i)
[0,T ]). (5)

We can then minimise this with respect to the reduced model parameters by gradient descent, noting
that the cross-entropy is a convex function of p. Formulæ for the gradients can be computed by differ-
entiating Eq. (4) by hand, or by using automatic differentiation software. Minimising the estimated
cross-entropy via gradient descent yields a probabilistic estimate for the optimal parameters, which
will generally converge to the true solution as N → ∞. Summarising the contents of this section we
arrive at Algorithm 1 for automatically fitting the optimally reduced model.

Algorithm 1 Model reduction via gradient descent.
Inputs: number of simulations N, simulation length T , full model q, model family {pθ}, learning
rate η
Output: reduced model parameters θ̂

for all i = 1, . . . ,N do
sample n(i)

[0,T ] from q

project n(i)
[0,T ] to ñ(i)

[0,T ]

end
initialize parameters θ̂
while not converged do

compute Ĥ(q̃; pθ̂) using (4), (5)
compute ∇θ Ĥ(q̃; pθ̂)
θ̂ −= η∇θ Ĥ(q̃; pθ̂)

return θ̂

This algorithm has the advantage of being completely general, but unlike standard model reduction
algorithms it involves numerical optimisation. In the next section we will analyse our loss function
more closely to obtain alternative expressions for the optimum, allowing us to bypass Alg. 1 for a
wide range of problems.
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Instead of minimising KL(q̃ ‖ p), an alternative approach would minimise the opposite KL diver-
gence KL(p ‖ q̃). The latter has been analysed e.g. in [31, 32] for continuous-time Markov processes.
Despite the almost symmetric definition, it is well-known that these two quantities behave rather dif-
ferently in an optimisation context and lead to very different results, cf. [37]. From a pragmatic point
of view, minimising KL(q̃ ‖ p) involves computing likelihoods under p, while minimising KL(p ‖ q)
involves computing probabilities of trajectories under q̃, which is significantly more difficult.

Example: Telegraph Model

We will illustrate the above by means of a well-known example, the telegraph model of gene tran-
scription [38], simplified to neglect degradation and depicted in Fig. 3. The full model q consists of
three species: a gene in the on state (Gon) and the off state (Goff), together with mRNA (M). The
gene switches between both states with constant activation rate σon and inactivation rate σoff , and in
the active state produces mRNA with rate ρon. The reduced model p consists only of mRNA (M),
which is produced at constant rate ρeff . This instructive example has previously been treated in [33]
in a similar context.

A state in the full model can be represented as n = (g,m), where g is the gene state (on or off)
and the m is the number of mRNA present, while a reduced state ñ = (m) is given by the number
of mRNA molecules only, with the unobserved component z = (g) being the gene state. The only
reaction in q that descends to q̃ is mRNA production, whereas the two gene switching reactions are
not observed. Note that the projection q̃ of the telegraph model is not Markovian, as the instantaneous
mRNA production rate depends on the current gene state g, but we can sample from q̃ by simulating
q and discarding the information about the gene state.

The reduced model p is a Poisson process whose only parameter is the production rate ρeff . The
only trajectories possible under p are those starting at m = 0 and increasing by one at every jump.
The log-likelihood of such a trajectory ñ[0,T ] under p is given by

log p(ñ[0,T ]) = ñ(T ) log ρeff − ρeffT, (6)

where ñ(T ) is the total number of mRNA produced up to time T , as can be verified using Eq. (4).
The log-likelihood of any other trajectory is −∞.

Note that Eq. (6) describes the likelihood for an entire trajectory, as opposed to the likelihood of
observing nT molecules at time T . The latter follows a Poisson distribution with rate ρeffT and can
be obtained by integrating Eq. (4) over all trajectories that end at the same nT . Indeed, conditioned
on observing nT mRNA molecules at time T their individual production times are uniformly and
independently distributed on [0,T ] by the properties of the Poisson process, and integrating Eq. (6)
over all possible combinations of production times we recover the usual Poisson likelihood, keeping
in mind that any permutation of the production times yields the same trajectory.

The reduced model p can model every trajectory obtained from q̃, so the log-likelihood of any
sample from q̃ is finite. The mRNA transcription reactions in both models correspond. If q were to
include e.g. mRNA degradation as is usual in the literature, some trajectories from the full model
would feature decreases in ñ and be impossible under p; in this case the KL divergence would
infinite, which signals that the reduced model p is not appropriate and needs to be extended to include
degradation.

For this simple example the likelihood of a reduced trajectory under p only depends on the total
mRNA produced. We can therefore compute the cross-entropy explicitly:

H(q̃; p) = −Eq̃ [ñ(T )] log ρeff + ρeff T. (7)

7



Minimising this with respect to ρeff yields the optimum

ρ∗eff =
1
T
Eq̃ [ñ(T )] , (8)

which is the average mRNA production rate on the interval [0,T ]. Thus the optimal approximation
to the telegraph model is obtained by setting the mRNA production rate to its mean value. This
is the result we obtain by applying the QEA to this system (see 2.5.2), which suggests that the
approximation will be better if σon and σoff are large compared to ρon. We will see how to evaluate
the approximation quality in 2.4.

Even if the analytical minimisation above were not possible, the above minimisation can be
performed using Alg. 1. To do so we start by sampling a fixed number N of mRNA trajectories from
the telegraph model; the more trajectories we use, the better our estimate of ρeff will be. The next
step is constructing the cross-entropy loss function for the reduced model, which only depends on
one parameter ρeff and is given by Eq. (7). We then perform gradient descent on the cross-entropy,
averaged over all trajectories, to arrive at our estimate of ρeff . Here the learning rate η in Alg. 1
has to be determined by experimentation. The code accompanying this paper contains an example
implementation of this procedure in Julia.

2.3 Analysing the KL Divergence

In the last section we have derived a numerical procedure to minimise the KL divergence (1), or
equivalently the cross-entropy (3). While this yields a direct computational procedure to fit reduced
models, we are equally interested in the theoretical insights to be gained from considering model
reduction as a variational problem. Understanding how our approach works in more detail will help
us establish links with existing model reduction techniques and derive general principles that can
help us generalise these to new systems.

As shown in Appendix B, for a Markovian reduced model p the cross-entropy can be written as

H(q̃; p)[0,T ] = H(q̃0; p0) +

∫ T

0

∑
ñ

q̃t(ñ)

p←ñ(t) −
∑
m̃,ñ

q̃m̃←ñ(t) log pm̃←ñ(t)

 dt (9)

= H(q̃0; p0) +

∫ T

0
H(q̃; p)t dt, (10)

with the instantaneous cross-entropy rate at time t defined as

H(q̃; p)t = −
∑

ñ
q̃t(ñ)

∑
m̃,ñ

q̃m̃←ñ(t) log pm̃←ñ(t) − p←ñ(t)

 . (11)

Here we use the effective transition rates

q̃m̃←ñ(t) = lim
δt→0

1
δt

P(q̃(t + δt) = m̃ | q̃(t) = ñ, q0) (m̃ , ñ). (12)

If q̃ is not Markovian, the transition probability from a state ñ at time t will be affected by the history
of the process, and hence on the initial distribution q0. If q̃ is Markovian, Eq. (12) reduces to the
classical transition rate which is independent of q0.

Looking at Eq. (9) we make two important observations. As intimated in the discussion of the
telegraph example of the previous section, if any trajectory under q̃ has jumps which are not allowed
under p, i.e. if q̃m̃←ñ , 0 while pm̃←ñ = 0, then the cross-entropy (9) will be∞: the reduced model p

8



is not flexible enough to model q̃. On the other hand, if p contains transitions which are impossible
under q̃, i.e. if pm̃←ñ , 0 while q̃m̃←ñ = 0, then these can only increase the cross-entropy (9). This
means that the optimal reduced model p does not contain transitions beyond those in q̃, and in the
context of the CME we can therefore assume that p and q̃ have the same reactions, with different
propensities (Markovian for p, not necessarily for q̃).

If the i-th reaction in p has propensity function ρi(ñ; t) and net stoichiometry si we obtain the
following decomposition of the cross-entropy rate at time t:

H(q̃; p)t = −
∑

i

∑
ñ

q̃t(ñ)
[
q̃ñ+s̃i←ñ log ρi(ñ; t) − ρi(ñ; t)

]
, (13)

where the first sum is over all reactions in p, or equivalently all visible reactions in q. The total cross-
entropy is obtained by integrating Eq. (13) over [0,T ], and we can find the optimal p by optimising
the cross-entropy for each reaction separately.

We can minimize Eq. (13) analytically if the full model q is Markovian. Assume there is precisely
one reaction in q with net stoichiometry s̃i in the projection, and let σi be its propensity function.
Differentiating the above equation with respect to ρi(ñ; t) and setting the derivative to zero we obtain

ρ∗i (ñ; t) =
∑

z
qt(z | ñ)σi(ñ, z; t) = Ez[σi(ñ, z; t) | ñ; t] . (14)

The optimal propensity for a reaction under p is the expected propensity under the original model
conditioned on the observed state ñ. In particular, if the propensity of the original reaction does not
depend on unobserved species it can be taken over directly. We explore the implications of these
results on the moments of the reduced system in Section 2.5.4.

In practice we often place constraints on the reduced propensities ρi(ñ; t) such as time-homogeneity
and mass-action kinetics, which result in constrained optima. For example, if ρi is taken to be inde-
pendent of time we have to integrate Eq. (13) over [0,T ], and as T → ∞ it can be verified that the
total cross-entropy is minimised for

ρ∗i (ñ) =
∑

z
q∞(z | ñ)σi(ñ, z) = Ez[σi(ñ, z) | ñ; t = ∞] , (15)

which is the steady-state version of Eq. (14).
For other forms of propensity functions the optimum can generally be obtained by a similar

averaging procedure. In all cases the main difficulties lie in estimating the relevant conditional ex-
pectations, which can be done numerically using the Monte-Carlo approach presented in the previous
section. Eq. (14) is perhaps the central result of this paper, and we will see that it coincides with the
propensities obtained using the QSSA, the QEA and the LMA in when these are applied. These
methods can therefore all be seen as special cases of our variational approach based on minimising
the KL divergence. As an aside, our results provide a new derivation of the marginal CME proposed
in [30, 34] and the nontrivial result that Eq. (14) and Alg. 1 target equivalent objectives.

In particular Alg. 1 can be bypassed by computing certain conditional moments of a system,
which provides an alternative way to perform model reduction. For many systems these conditional
moments can be efficiently computed using moment equations, possibly involving moment closure
approximations, which have attracted a large amount of literature [4]. The LMA, for example, in-
volves a bootstrapping approach to estimate the relevant moments. Alternatively the conditional
expectations could be computed by numerically integrating the CME, although we do not expect this
to scale well to large systems. In consequence Alg. 1, while a convenient way to implement our
approach in full generality and empirically verify its performance, can often be bypassed.
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Figure 3: Model reduction illustrated using the telegraph model without degradation. (a) Schematic
of the model. (b) The reduced model is equivalent to a Poisson process with rate ρeff . (c) Example
trajectory from the telegraph model, showing mRNA numbers (top) and the gene state (bottom) in
time. If we only observe mRNA numbers we can infer the current gene state by filtering, obtaining
the probability for the gene being on at a given time (blue line). When mRNA numbers increase
the on probability jumps to 1 since transcription only happens in that state. (d) KL divergence rate
between the telegraph model and its Poisson reduction, for various choices of the switching timescale
τ = σon +σoff and on probability pon = σon/(σon +σoff), assuming a fixed transcription rate ρon = 1.
The Poisson approximation becomes more accurate as the switching timescale increases compared
to the transcription timescale. KL divergences were estimated numerically using Alg. 2.

Example: Telegraph Model, cont.

Consider the telegraph model from the previous section. If we make the reduced model p more
flexible by allowing a nonlinear and time-dependent propensity ρ(m; t) = ρeff(m; t), then the cross-
entropy between q̃ and p can be computed as

H(q̃; p) =

∫ T

0

∑
m

q̃t(m)
(
q̃m+1←m(t) log ρeff(m; t) − ρeff(m; t)

)
dt. (16)

Note that both q̃ and p have the same initial conditions. The effective propensities of q̃ can be
computed as

q̃m+1←m(t) = ρon qt(g = on |m), (17)

which is ρon weighed by the probability that the gene is on at time t given that there are m mRNA
molecules present. This is the optimal propensity for the reduced model p in accordance with
Eq. (14), featuring a nonlinear dependence on m, and this can be shown to be the optimal Markovian
approximation to q̃. We will see in Section 2.5.4 that this approximation exactly matches the mRNA
distribution of the full model at all times.

If we require mass-action kinetics for the reduced model, i.e. if we let ρ(m; t) = ρeff(t) for an
effective rate constant ρeff(t), minimising the cross-entropy (16) yields

ρeff(t) = ρon qt(g = on). (18)

The effective transcription rate learned by p is the expected transcription rate of q at time t, this time
averaged over all m.

10



Finally if we require ρ(m; t) = ρeff to be time-independent we obtain by a similar procedure

ρeff = ρon ·
1
T

∫ T

0
qt(g = on) dt, (19)

which is just the previous result averaged over t. This is the special case considered in the previous
section, where p was restricted to be a Poisson process with constant intensity. As T → ∞, the
optimum (19) converges to the expected transcription rate of q at steady state.

It can be checked that the propensity functions (17) and (18) exactly preserve the mean mRNA
numbers of the full system. Similarly, the time-independent propensity function (19) preserves the
mean mRNA numbers at steady state. For mass-action propensities, however, the variances will be
underestimated. This is because the reduced models do not model gene switching, which increases
the noise in the system. This is a common occurrence with model reduction and is well-known
for the telegraph model, since mRNA numbers are always distributed following a Poisson mixture
distribution, which will always have a higher variance than a single Poisson distribution with the
same mean [39]. We will further explore how well reduced models capture marginal distributions of
the original in Section 2.5.4.

2.4 Computing KL Divergences

To this point we have been occupied with minimising the KL divergence (1), or rather the cross-
entropy (3), with respect to p. Perhaps counter-intuitively, minimising the KL divergence is easier
than computing it, since the entropy

H(q̃)[0,T ] = −Eñ[0,T ]

[
log q(ñ[0,T ])

]
, (20)

can be ignored during optimisation. In order to assess the performance of the reduced model obtained
this way we want to compute the full KL divergence, and hence the entropy, explicitly. As for the
cross-entropy the integral in Eq. (20) is generally intractable, and we will approximate the entropy
by simulating N samples ñ(i)

[0,T ] from q̃ and computing

Ĥ(q̃) = −
1
N

N∑
i=1

log q̃(ñ(i)
[0,T ]). (21)

Here we face another difficulty, for if q̃ is not Markovian we cannot use Eq. (4) to compute log-
likelihood of a trajectory ñ[0,T ]. Since by assumption q is a Markov process, the projection q̃ is
just a partially observed Markov process and we can use the so-called forward algorithm for Hidden
Markov Models [40] to compute the log-likelihood of a trajectory.

The forward algorithm computes the joint probability q(ñ[0,t], zt) for the observed trajectory up to
time t and the current state of the hidden species, zt. As shown in Appendix C, the forward algorithm
in this case yields the following set of jump ODEs:

q(ñ0, z0) = q0(ñ0, z0), (22)
d
dt

q(ñ[0,t], zt) =
∑
z′,zt

(
q(ñt ,zt)←(ñt ,z′) q(ñ[0,t], z′) − q(ñt ,z′)←(ñt ,zt) q(ñ[0,t], zt)

)
−

∑
i

σi(ñt, zt) q(ñ[0,t], zt), (23)

lim
t↘tk

q(ñ[0,t], zt = z) = lim
t↗tk

(
σ jk (ñk, z̃t = z) q(ñ[0,t], z′)

)
, (24)
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with jumps at the jump times of the observed trajectory ñ[0,T ]. The first sum in Eq. (23) represents
hidden reactions (those that do not affect ñ), and the second sum is over all visible reactions in q,
with propensity functions given by the σi. The marginal likelihood of the observed trajectory can
then be computed by summing over the unobserved variables z

q̃(ñ[0,T ]) =
∑

z
q(ñ[0,T ], z). (25)

The above equations take the form of a modified CME where the observed variables are fixed.
They can be solved using an adaptation of the Finite State Projection algorithm [5], and in cases
where the unobserved state space is finite, exact solutions can be computed numerically. We sum-
marise the procedure to estimate the KL divergence defined in Eq. (1) in Algorithm 2.

Algorithm 2 Computing the projected KL divergence between a full and a reduced model.
Inputs: number of simulations N, simulation length T , full model q, reduced model p
Output: KL divergence estimate K̂L(q̃ ‖ p)

L̂ := 0
for all i = 1, . . . ,N do

sample n[0,T ] from q
project n[0,T ] to ñ[0,T ]
compute p(ñ[0,T ]) using (4)
compute q̃(ñ[0,T ]) using (22)–(24), (25).
L̂ += q̃(ñ[0,T ]) − p̃(ñ[0,T ])

return L̂/N

As further shown in Appendix C, a corollary of the above equations is the following jump ODE
for the marginal distribution itself:

log q̃(ñ0) = log q̃0(ñ(0)), (26)
d
dt

log q̃(ñ[0,t]) = −
∑

i

Ezt

[
σi(ñ(t), zt) | ñ[0,t], q0; t

]
, (27)

lim
t↘tk

log q̃(ñ[0,t]) = lim
t↗tk

(
log q̃(ñ[0,t]) + logEzt

[
σ jk (ñk, z̃t) | ñ[0,t], q0; t

])
. (28)

These equations generalise Eqs. (4) to the presence of unobserved species z. These equations can be
found in various places in the literature, e.g. [33, 35, 41–44] although we are not aware of a consistent
nomenclature for this modification of the CME.

The equations for the log-likelihood are linear and can be split into a sum of contributions for
each reaction in q̃. Integrating over all reduced trajectories ñ[0,T ] shows that the entropy H(q̃) can
thus be expressed as a sum of contributions from each reaction in q̃. Eq. (13) shows that the same
decomposition holds for the cross-entropy H(q̃; p), so entire KL divergence KL(q̃ ‖ p) can be de-
composed into contributions coming from the individual reactions, which allows us to differentially
analyse the accuracy of the reduced model p for each reaction separately. We note that all reactions
together determine the distribution q on trajectories over which we integrate, so this decomposition
is not strict in practice.

Example: Telegraph Model (cont. 2)

We can solve the filtering problem for the telegraph model exactly as the unobserved state space is
2-dimensional. Let F(i; t) = q

(
g(t) = i,m[0,t]

)
. The telegraph model consists of three reactions, the

12



hidden switching reactions with parameters σon and σoff , and the visible transcription reaction ρon.
Specialising Eq. (23) to this system we obtain

d
dt

F(on; t) = −(ρon + σoff) F(on; t) + σon F(off; t), (29)

d
dt

F(off; t) = σoff F(on; t) − σon F(off; t), (30)

where m[0,t] denotes the observed mRNA trajectory. At each mRNA production event we update the
probabilities according to Eq. (24), which in this case reads:

lim
t↘tk

F(on; t) = ρon · lim
t↗tk

F(on; t), (31)

lim
t↘tk

F(off; t) = 0. (32)

The marginal likelihood of the observed mRNA trajectory is then given by

q
(
m[0,t]

)
= F(on; t) + F(off; t). (33)

These derivations can also be found in [33].
As a byproduct the above equations yield the conditional distribution over the gene state at each

time t given the trajectory prior to that time point. These are the filtered distributions and illustrated
in Fig. 3c, but we only need the marginal likelihood for our purposes.

Using the above equations to compute the log-likelihood for a large number of trajectories sam-
pled from the telegraph model q yields a numerical approximation of the entropy H(q̃), and together
with Eq. (6) we obtain an estimate of the KL divergence KL(q̃ ‖ p). For time-homogeneous propen-
sities we empirically found the KL divergence to be asymptotically proportional to T , and we call
the proportionality factor the (steady-state) KL divergence rate. Note that the cross-entropy rate can
be defined directly using Eq. (11).

In Fig. 3d we show how this KL divergence rate between the telegraph model and its Poisson
approximation changes for various choices of σon and σoff . We observe that the KL divergence
rate tends to 0 as the switching rates increase; indeed the Poisson approximation can be obtained
from the QEA for this example. We further note that the KL divergence is maximal when the gene
spends substantial amounts of time in each state; for pon close to 1 the gene is almost always active
and the system approaches constitutive expression with rate ρ, while for pon close to 0 the gene
only activates sporadically and resembles a constitutive gene with a very low expression rate ρ · pon.
Visually inspecting mRNA trajectories generated in both regimes show that the results become harder
to distinguish from the Poisson process.

Our results on the telegraph model without degradation apply almost verbatim when degrada-
tion is included: adding the reaction M −−→ ∅ to the full and reduced models does not affect the
KL divergences considered. A priori adding degradation changes the probability distribution over
trajectories, which can now exhibit decreasing mRNA numbers, but the log-likelihood contributed
by the degradation reaction is the same between the telegraph model and its reduction, and therefore
the difference cancels in Eqs. (26)–(28) and Eq. (13). Since the log-likelihood contributed by the
gene switching and transcription reactions does not depend on mRNA numbers, which do change
in the presence of degradation, the total KL divergence is unaffected. In the presence of feedback,
degradation would indirectly affect the KL divergence via its effect on mRNA numbers; we refer the
interested reader to the recent paper [35] for an analysis of this type of information flow in stochastic
biochemical reaction networks. We can readily verify that our observations on the mean and vari-
ance of mRNA numbers under the telegraph model and its reduction remain valid in the presence of
degradation.
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2.5 Relationship with Known Approaches

2.5.1 The Quasi-Steady State Approximation

In deterministic chemical kinetics the Quasi-Steady State Approximation (QSSA) is a model reduc-
tion technique that can be applied when a system can be partitioned into so-called slow species ns and
fast species nf such that the fast species nf evolve on a much faster time scale than the slow species.
On the timescale on which the slow species evolve, the fast species can therefore be assumed to reach
their steady state almost instantaneously. Thus one assumes d

dt nf = 0, which allows for simplification
of the remaining equations for the slow species. The QSSA has famously been applied to Michaelis-
Menten enzyme kinetics with the enzyme-substrate complex ES as the fast species, resulting in the
classical Michaelis-Menten propensity for product formation (see 3.2 for more information).

The QSSA was extended to the stochastic case in [8]. Here one assumes that conditioned on ns,
the fast species reach steady state nearly instantaneously compared to the timescale of interest. In our
formulation the reduced state space consists of the slow species, ñ = ns, and the unobserved species
are the fast species, z = nf . As shown in [8] the QSSA yields the following reduced CME for the
approximation p (Eqs. (10), (11) in [8]):

d
dt

pt(ns) =

r∑
i=1

[
ρ̃i(ns − Ss

i ; t) pt(ns − Ss
i ) − ρ̃i(ns; t) pt(ns)

]
, (34)

where the reduced propensities ρ̃i are defined as

ρ̃i(ns; t) = Enf

[
ρi(ns, nf ) | ns; t

]
. (35)

This agrees precisely with Eq. (14), which illustrates how the QSSA can be seen as minimising
the KL divergence (B4).We remark that Eq. (34) is a special case of the phenomenon discussed in
Section 2.5.4. We can compare (35) with the true propensities of the projection q̃, which depend on
the entire history of the observed trajectory and the initial distribution q0:

ρexact
i (n; t | q0, ns

[0,t]) = Enf
[
ρi(ns, nf ) | ns

[0,t], q0; t
]
. (36)

This equation, which describes the instantaneous reaction rate of the non-Markovian process q̃, has
previously been considered e.g. in [8, 33].

Some intuition for the relationship between timescale separation and our approach can be gained
from equations Eqs. (26)–(28), which describe the probability of a reduced trajectory ñ[0,T ] under
q̃. Reaction propensities under q in general depend on the unobserved species, whose distribution is
correlated with the history of the current trajectory. If we assume that the timescale of the unobserved
species nf is very fast, then this correlation will decay very quickly and the time-dependence of the
conditional distributions in Eqs. (26)–(28) will be negligible, so we can replace these equations by

log q̃(ñ0) = log q̃0(ñ(0)), (37)
d
dt

log q̃(ñ[0,t]) = −
∑

i

Ezt [σi(ñ(t), zt) | ñt] , (38)

lim
t↘tk

log q̃(ñ[0,t]) = lim
t↗tk

(
log q̃(ñ[0,t]) + logEzt

[
σ jk (ñk, z̃t) | ñt

])
. (39)

which is another way of showing that q̃ has propensities given by (35).
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2.5.2 The Quasiequilibrium Approximation

While the QSSA relies on a reaction network being divisible into slow and fast species that evolve
on two different timescales, in practice it is more frequently the case that some reactions in a system
will be fast and that some will be slow. The Quasiequilibrium Approximation (QEA) developed in
[17, 45, 46] modifies the QSSA to model this scenario by reformulating the system using extents
a = (a1, . . . , ar), where the extent ai is defined the number of times reaction i has occurred.

The extents themselves form a Markov chain, and the state of a system can be obtained from its
extents as n(t) = n0 + Sa(t), where S is the stoichiometry matrix. As derived e.g. in [17], the CME
of this system is

d
dt

qt(a) =
∑

i

[
ρi(Sa − Si) qt(a − ei) + ρi(Sa) qt(a)

]
. (40)

Here the sum is over reactions and ei is the vector with a 1 in the i-th position and 0 elsewhere.
The QEA assumes that the extent vector can be divided into slow and fast components as and a f ,
respectively, corresponding to slow and fast reactions, and we define our reduced system to consist
only of the slow reactions. From here we can proceed analogously to the QSSA discussed above and
obtain that the reduced propensities are given by

ρ̃i(as; t) = Ea f
[
ρi(Sa) | as; t

]
, (41)

if the fast reactions can be assumed to equilibrate instantaneously.
A subtlety of this argument is the fact that the fast extents a f can only increase in time and

therefore will not admit a steady-state distribution in general. The conditional means, however, will
converge in many cases, e.g. if a f consists of both directions of a reversible reaction. If this is the case
the QEA yields a well-defined reduction, which moreover agrees with (14) and therefore minimises
the KL divergence to the full model on the space of extents.

2.5.3 The Linear Mapping Approximation

The Linear Mapping Approximation (LMA) [25] replaces a bimolecular reaction of the form G +

X
σ
−−−→ G∗, where G is a binary species representing a gene state, by a reaction G

σ
−−−→ G∗ with

effective propensity σ. Assuming mass action kinetics, the propensity function of the bimolecular
reaction is ρ(n) = gxσ, where g is the state of G and x the abundance of the species X, and the
propensity of the linearised version is ρ̃(n) = σg for an appropriate choice of σ. Taking the derivative
with respect to σ of the cross-entropy rate (13) at time t yields

∂H(q̃; p)t

∂σ
=

∑
n

qt(n)
(
g −

σgx
σ

)
, (42)

which vanishes if and only if

σ = σ · E
[
x | g = 1; t

]
. (43)

This provides a mathematical justification for the mean-field assumption underlying [25]. The LMA
approximates this conditional expectation by imposing a self-consistency condition on the linearised
system, thereby deriving an effective approximation to (43).

As an aside we can compute the KL divergence rate between q and the optimal reduction p given
by (43) analytically to obtain

KL(q ‖ p)t = σ · P(g = 1) ·
(
E

[
x log x | g = 1

]
− E

[
x | g = 1

]
E

[
log x | g = 1

])
. (44)
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Here the dependence of the expectations on the time t are suppressed. This expression for the discrep-
ancy incurred by the LMA, which resembles the definition of the variance, quantifies the intuition
that the LMA should be accurate if fluctuations of X in the unbound gene state are small.

The above derivation is not entirely rigorous as the linearisation has a different net stoichiometry
than the original reaction and KL divergence between q and p is infinite. To remedy this we can
either neglect fluctuations in X due to binding in the original model or consider the KL divergence
on a reaction-by-reaction basis as discussed in 2.4, since the two reactions correspond despite their
different net stoichiometries.

If fluctuations in X are absent or can be neglected, the optimal reduction using Eq. (43) preserves
first-order moments for all species, assuming that all other reactions are linear. Indeed, replacing the

reaction G
σ[X]
−−−−−−→ G∗ by its linearisation only changes the moment equation for E[g]. For the full

model, the latter is given by

d
dt
E[g; t] = σE[gx; t] + . . . , (45)

while the reduction has

d
dt
E[g; t] = σE[x | g = 1; t]E[g; t] + . . . , (46)

which is equivalent for a binary species g (the remaining terms only depend on species means by our
linearity assumption). Second and higher-order moments will in generally differ between the two as
we will see. This sheds light on a more subtle aspect of the LMA: the self-consistent approach in
[25] involves computing the second-order moment E[gx; t], which can differ in the reduction. For
this reason the original approach, while generally quite accurate, can lead to slightly suboptimal
propensities as we shall see in Section 3.1.

2.5.4 Moment-Matching

In Appendix D we show that the optimal reduced model p, defined using the propensity functions
(14), exactly preserves the marginal distributions of the full model. In particular, if we place no
constraints on the reduced propensity functions the resulting system p will have the same means,
variances and higher-order moments for the observed species as the full system q. Thus our approach
is also related to moment-matching, in particular to the proposed moment-based methods in [11, 47].

The fact that the reduced model p can exactly capture the probability distribution of the projected
model q̃ at any time t does not mean that the two are equivalent. The difference can be seen on
the level of individual trajectories. The reduced model p is always memoryless, whereas this is not
usually the case for q̃, resulting in different dynamical dynamical properties such as autocorrelations.
This ability to discriminate models on a trajectory-level illustrates an advantage of our path-based
approach over purely moment-based model reduction.

We emphasise that exact preservation of moments only holds for the globally optimal propensity
functions defined by Eq. (14), which can depend on ñ and t in a complicated way. In practice one
often use parametric propensity functions, such as mass-action propensities or Hill functions, and as
a consequence this feature is lost. As with the LMA or the telegraph model it may still be possible
to preserve some moments (such as means) exactly with the right choice of propensity function. Our
results imply that discrepancies in the moments between the full and reduced models result from the
fact that Eq. (14) is only computed approximately for methods like the QSSA or the QEA.
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Figure 4: Reduction of an autoregulatory feedback loop using the Linear Mapping Approximation.
(a) Schematic of the full reaction network. The number k ≥ 0 of proteins produced at each reaction
is geometrically distributed with mean b. (b) Reduced form of the same reaction system, where
the protein-gene binding reaction is replaced by a mean-field approximation. (c) For the chosen
parameter values the system exhibits critical behaviour around σb = 2.5, transitioning from a mostly
unbound to a mostly bound state. Near the transition protein fluctuations increase and the mean-field
assumption in the LMA breaks down. A comparison of steady-state moments and distributions for
the full model, the optimal reduction and the LMA shows that the effective reaction rate computed by
the latter is generally close to optimal. (d) KL divergence rate at steady state between the full model
and the reduced version, computed analytically using Eq. (44) and using Monte Carlo simulations.
The peak around the transition matches the observed discrepancy between the full and the reduced
model. The remaining model parameters are σu = 400, ρu = 0.3, ρb = 105, b = 2, d = 1.

3 Numerical Experiments

3.1 Autoregulatory Feedback Loop

In this section we analyse a simple model of stochastic gene expression featuring positive autoreg-
ulation (see Fig. 4a). The system in question consists of a single gene found in two states, bound
(Gb) and unbound (Gu), as well as the coded protein P which can bind to the gene to increase its own
transcription rate. For simplicity we do not consider mRNA dynamics explicitly, instead modelling
protein production as occurring in geometrically distributed bursts (see [48] for a derivation). The
linearised version of the system, using the optimal propensity derived in Section 2.5.3, is shown in
Fig. 4b. In Fig. 4c we compare the steady-state distributions of the full model with its linearisation,
where the effective binding rate is computed numerically using Alg. 1, and the LMA, where the
binding rate is approximated using the self-consistent approach in [25].

This system exhibits critical behaviour for some parameter values (see Fig. 4c), and it was shown

17



in [49] that computing the moments of this system is difficult near points of criticality as most mo-
ment closure techniques as well as the LMA yield inaccurate results. Our results show that for all
parameters the self-consistent equations of the LMA provides results close to the numerically com-
puted optimum. As discussed in Section 2.5.3, the exact reduction very closely reproduces mean
protein numbers, with the LMA incurring a small bias near the critical point. In contrast, neither
reduction is able to capture the increased fluctuations near the critical point, significantly underes-
timating the variance in protein numbers. Comparing the protein distributions for the full and the
optimally reduced model shows a large discrepancy near the critical point, compared to parameters
far from it.

We compute the KL divergence rate at steady state between the full model and its linearisation
using (44) and via Monte Carlo estimation (see Fig. 4d). The steady-state KL divergence rate exhibits
a notable peak near the critical point, coinciding with the parameter regime where the linearisation
fails to capture the full model. As we move away in either direction from the critical point the KL
divergence decreases in accordance with the better approximation of the system by its linearised
version. This shows how the KL divergence can be used to assess how well model reduction works
for different parameter regimes.

3.2 Michaelis-Menten Kinetics

We next consider one of the most-studied reaction networks in biology, the Michaelis-Menten model
of enzyme kinetics, consisting of an enzyme E and a substrate S that reversibly bind to form an
enzyme-substrate complex ES which converts the substrate into the product P (see Fig. 5a). This
system is often treated as an example application of both the QSSA and the QEA, which remain the
standard model reduction techniques applied to this example.

The QSSA classically models the enzyme E and the enzyme-substrate complex ES as the fast
species, and replaces the full system by a one-step reaction where the substrate is converted to the
product with a Hill-type propensity function (see Fig. 5b). This approximation is known to be valid
when

ET � [S ] + Km, (47)

where ET is the total number of enzymes and Km is the Michaelis-Menten constant (k−1 + k2)/k1 [50,
51]. Note that the reduced model is invariant under the scaling

ET 7→ ε · ET ki 7→ ε−1 · ki, i = −1, 1, 2, (48)

where the parameter ε can be seen as controlling the accuracy of the reduction: the rescaled QSSA
condition (47) reads

εET � [S ] + Km, (49)

which suggests that small values of ε should result in the full model more closely resembling the
QSSA reduction.

The stochastic QEA for this system is analysed in [17] and also results in a one-step reaction
where the propensity function is now piecewise linear (see Fig. 5b). As opposed to the QSSA, the
QEA is accurate when substrate binding and unbinding is fast, i.e. k1, k−1 are sufficiently large. Note
that the QEA reduction is invariant under the scaling

k1 7→ c · k1 k−1 7→ c · k−1, (50)
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abundance parameter ε in (48). The QEA generally becomes more accurate as c increases, and
the QSSA becomes more accurate as ε decreases. Note the small copy number effects that become
apparent in the QSSA for low values of ε and c. We used the analytically obtained propensities for the
QEA and the QSSA, and numerically estimated the KL divergences using Alg. 2. (d) Comparison of
the effective reaction propensities computed according to Eq. (14) with those predicted by the QEA
and the QSSA. Here substrates include enzyme-bound substrates. The top figure shows the effective
propensities for ε = 1: as c→ ∞ the effective propensities converge to the function predicted by the
QEA. The bottom figure shows the effective reaction propensities for c = 1000, and as ε decreases
the propensities approach the function predicted by the QSSA. The remaining parameters were fixed
to k1 = k−1 = 0.001, k2 = 0.1, ET = 10 and S T = 100.
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where c controls the timescale at which quasiequilibrium is reached, and therefore the accuracy of the
QEA. We stress that (48) and (50) are two independent scalings and can be performed simultaneously,
as will be the case in Fig. 5c.

In general it may be difficult to predict which of the two approaches is more accurate unless one
is clearly in one of the limiting regimes. Based on the KL divergence between the full model and
either of the two reactions we can investigate this question for a range of parameters. The reduced
model consists of two species, S and P, and since [S ] + [P] is conserved we can describe it in terms
of either of the two. The correct projection for this example identifies the species S and ES in the full
model, ie. we define [S ]red = [S ] + [ES ] in order to eliminate the binding and unbinding reactions
from the projection. This lumping of two rapidly equilibrating species is standard when using the
QEA (see e.g. [24]), but it applies equally well to the QSSA in this case.

In Fig. 5c we use Alg. 2 to estimate the total KL divergence over [0,∞] between the full model
and both reductions for a fixed number of substrate molecules. The total KL divergence is finite
since all trajectories enter the same absorbing state defined by [S ] = 0 in a finite amount of time.
As expected for the QEA its accuracy increases with c, but whereas the QSSA tends to become less
accurate for large ET , in the low enzyme regime we observe a similar decrease in accuracy that is not
explained by the deterministic theory.

The observed decrease is a small copy number effect caused by the fact that the waiting time
distribution between two productions of P is not exponential: for very small ET the unbinding of
an enzyme immediately after such an event implies that a significant fraction of such productions
occur as a two-step process (where the free enzyme binds another substrate and then converts it)
[52]. For large enough c the binding step is very fast, and assuming that k2 � k−1 so that unbinding
is unlikely to occur again, the conversion of substrates to products can be viewed as an effective one-
step process. The effect of nonexponential waiting time distributions has previously been analysed
in [53]; we see that the KL divergence on trajectories can be sensitive to subtle dynamical effects
such as waiting time distribution that are not visible when considering e.g. the moments of a system,
which are well predicted by the QSSA for small values of c and ε.

Overall we can see that for the chosen parameter values the QSSA generally performs better than
the QEA in the regime of small ε, corresponding to low enzyme numbers, and the QEA is most
accurate for c, keeping in mind the scalings in (48) and (50). Neither approximation is satisfactory if
the number of total enzymes is larger than the amount of substrates, but the binding and unbinding
rates are small. In this scenario other approximations, such as the total QSSA [54], which we do not
investigate here, will generally be more accurate.

Figure 5d compares the effective propensities for the full system, as a function of the unconverted
substrate abundance, with the predictions made by the QEA resp. the QSSA. In the case of the QEA
we see that the effective propensities slowly converge to their limit as the timescale parameter c
increases. In contrast the QSSA provides a good approximation to the effective propensity as long
as the number of substrate molecules is larger than the number of enzymes. While the effective
propensities are the optimal choice for the reduced model, the actual quality of the approximation is
affected both by the size of the fluctuations of the actual propensities around their mean as well as
the degree to which the waiting times of the original system follow an exponential distribution.

3.3 Genetic Oscillator

Our final example is the gene expression system shown in Fig. 6a. This system consists of a gene,
mRNA and protein, as well as a Michaelis-Menten type protein degradation mechanism. Up to two
protein molecules can bind the gene, and in the twice bound state the gene pauses transcription. This
model has been considered in [11] as an example system where naive reduction of the CME using
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Figure 6: Comparison of different reductions for the oscillatory gene network. (a) Schematic of the
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that is not preserved in reductions IV and V. We used Alg. 1 to compute the effective parameters for
each reduction (cf. Table 2) from a single long trajectory probing steady-state behaviour. (c) Power
spectra of mRNA and protein concentrations (defined as copy numbers normalised by the system
size Ω). Models I, II and I+II closely reproduce the oscillatory behaviour of the full model while
IV and V do not show sustained oscillations. (d) KL divergence rates between the full model and
all reductions, estimated using Alg. 2. (e) Steady-state means and standard deviations for mRNA
and protein numbers, estimated numerically using the Gillespie algorithm. While all reductions
closely approximate the mean, Models IV and V do not match the variance of the full model. The
parameters for the full model, taken from [11], are Ω = 1000, ET = 10, ρm = 50, ρp = 0.0045,
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Hill-type effective propensities is unable to accurately capture the noise in the original. The true
system can exhibit oscillations in mRNA numbers that are caused by the two-step negative feedback
and are not present in the reduced version. In this section we want to analyse what reductions can be
performed on the full model while still keeping oscillatory behaviour.

We consider five different reductions for this model which are listed in Table 2. Each reduction
removes or combines several species such as gene states, thereby reducing the dimensionality of the
system. The rightmost column describes the correct projection for each model, derived using an
analogous argument as in the Michaelis-Menten example. We fit the unknown (effective) parameters
for each model numerically by minimising the KL divergence from the full model using Alg. 1.
Typical mRNA trajectories for all models can be seen in Fig. 6b. The oscillations in the full model
are clearly visible, and they are inherited by reductions I, II and I+II. In contrast, simplifying the first
binding step as in IV and V results in a non-oscillatory system (see Fig. 6c).

In Fig. 6d we compare the KL divergence rates between the full model and reductions I-V (note
that the different reductions are defined on different state spaces). While models I, II and I+II have
comparatively low KL divergences from the original there is a sharp increase with models IV and V.
From this alone one could expect that the latter perform significantly worse, which is indeed the case
as shown in Fig. 6b. Fig. 6e presents a comparison of the mean and standard deviations for mRNA
and protein abundances; while all models approximate the means very closely, the predicted standard
deviations for model IV and V are very far from their true values consistent with the lack oscillatory
behaviour. This resembles the results in Section 3.1 which also show excellent agreement of the full
and reduced model on the mean level, independent of the total approximation quality.

This comparison of various reductions shows how variational model reduction can be employed
on a more sophisticated scale, where multiple reductions are possible. Given a list of possible sim-
plifications we can automatically find optimal parameters for each reduction and compute the KL
divergence from the true model. Reductions which do not significantly affect the output will gener-
ally lead to very low KL divergences compared to those which do, as in this example where a large
gap between KL divergence rates separates reductions I, II and I+II from IV and V. The latter do
not retain much of the moments or oscillatory dynamics of the full model compared to the other
reductions.

4 Discussion

In this work we presented an information-theoretic approach to model reduction for the CME based
on minimising the KL divergence between the full model and the proposed reduction. Based on
this variational principle we determine the optimal reaction propensities for the reduced model in
Eq. (14) and show that it underlies some of the most common approaches to model reduction for
the CME: the QSSA [8–10], the QEA [16, 17] and the LMA [25]. As a consequence, we establish
that these methods can be seen as special cases of our approach. We furthermore obtain a general
justification for the mean-field arguments proposed in the literature and connect them with informa-
tion theory and likelihood-based approaches. We provide a numerical algorithm for automated fitting
of a reduced model based on minimising the KL divergence via stochastic gradient descent, and a
numerical algorithm for estimating this KL divergence in order to assess model fit. While the KL
divergence between Markov chains has been considered before in e.g. [19–21, 31, 32, 34, 35, 55], to
our knowledge it has not been studied in connection with standard model reduction methods as done
in this paper. Our numerical results show how the KL divergence can be computed in practice and
used in the context of model reduction.
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Using three biologically relevant examples we illustrated how these model reduction techniques
can be analysed from this variational perspective. For the autoregulatory feedback loop we showed
that the KL divergence provides a useful metric of approximation quality and can detect parameter
regimes where the mean-field approximation behind the LMA fails. Using the Michaelis-Menten
system we demonstrated how our approach can be used to decide between possible reductions of a
model, particularly in the non-asymptotic regime where neither the QSSA nor the QEA are strictly
valid. Finally we used the genetic oscillator in [11] as an example to show how different reductions
of a given model can be fit automatically, separately and in combination, and assesses which steps in
a putative model reduction procedure would impact approximation quality more than others.

In this paper we only focused on discrete stochastic models, mainly those described using the
Chemical Master Equation. This approach disregards continuum approximations such as the Chem-
ical Langevin Equation and the System Size Expansion [56], which are frequently used in practice,
and it is worth asking whether information-theoretic approaches can be extended to this context. A
priori this appears difficult since the KL divergence and related quantities tend to diverge in the con-
tinuum limit, such as the divergence between Brownian motions with different diffusion coefficients.
This similarly applies to the wide class of hybrid approaches [30, 42, 57, 58]. In particular, abun-
dance separation, as opposed to time-scale separation with the QSSA and the QEA, does not fall
under the umbrella approach we considered. In this scenario other perspectives on model reduction
are likely needed.

A major drawback of the general approach we presented is that the KL divergences we use
cannot usually be optimised analytically. As we have shown, the minimum typically corresponds to
computing conditional expectations as in (14), which is rarely possible exactly, e.g. in the case of the
LMA, where moment equations are used to approximate conditional means of protein numbers, or the
QSSA, where deterministic rate equations are commonly used to derive the approximate propensities.
The Monte-Carlo approach we proposed in Alg. 1 has the advantage of being completely generic,
but unlike most existing techniques it requires numerical optimisation and will inevitably be slower
than those. The optimisation problem in question typically being low-dimensional and convex, most
of the computational time is required to generate sample trajectories and compute gradients, with
variable computational complexity that heavily depends on the system.

One important aspect of model reduction we have not addressed is that of choosing an appropriate
architecture for a reduced model. As we investigated in the case of the genetic oscillator, while we can
always optimise the parameters given an architecture, the quality of the approximation can greatly
depend on which reductions are performed. Although methods for automatically choosing from a
predefined set of approximations of a system exist in special cases [15], a fully general algorithm
that computes a maximally reduced version of a given model within a given threshold is still missing
from the literature. In combination with other machine learning approaches to model reduction such
as [59], however, we hope that our approach may be one of several steps towards such a procedure.

The KL divergence is a well-studied quantity in statistics but it lacks some desirable properties in
the context of model reduction. While we were able to establish that optimising the KL divergence
in theory leads to a reduced system with the same marginal distributions, establishing a relationship
between the KL divergence and dynamical information such as the autocorrelation and power spectra
is more difficult. Our investigations suggest that the KL divergence on the space of trajectories is a
useful quantity that relates to both the marginal distributions and dynamical properties of the system,
and can be a useful metric of model fit. We are optimistic that further investigations in this area will
demarcate more clearly which properties of a model are well captured by the KL divergence and
which are not.
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A Likelihoods of Fully Observed Trajectories

Let p be a continuous-time Markov chain defined on the space X with initial distribution p0. If
p has time-independent transition rates the Stochastic Simulation Algorithm [60], reproduced in
Algorithm 3, returns exact samples from p. We can inspect the SSA to obtain the probability of
drawing any given trajectory as follows:

• The first state n(0) is drawn from the initial distribution p0 and has probability p0(n(0))

• The time τ1 until the next jump is drawn from an exponential distribution with rate p←n0 and
has probability distribution function p←n0 exp(−τ1 p←n0).

• The next state n1 is drawn from the transition distribution pn1 | n0 and has probability pn1←n0/p←n0

• The time τ2 until the next jump is drawn from an exponential distribution with rate p←n1 and
has probability distribution function p←n1 exp(−τ2 p←n1), etc.

We thus arrive at the probability

p(n[0,T ]) = p0(n(0)) · p←n0 · exp(−τ1 p←n0) ·
pn1←n0

p←n0

· exp(−τ2 p←n1) · . . . · exp(−τk p←nk−1) (A1)

where the last term corresponds to the probability that tk+1 > T , ie. that the next jump occurs after
time T (note the absence of the prefactor p←nk ). Each term p←ni in the above expression cancels with
the denominator in the next term, and upon taking logarithms we arrive at Eq. (4).

Algorithm 3 The Stochastic Simulation Algorithm to simulate samples from a Markov chain p.

Input: simulation length T , Markov chain p, initial distribution p0
Output: n[0,T ] - sampled trajectory

sample n0 ∼ p0
t ← 0, i← 0
while t < T do

sample τi+1 ∼ Exp(1/p←ni)
sample ni+1 = m with probability pm←ni/p←ni

t += τi+1

return states (n0, n1, . . .), jump times (t1, t2, . . .)

B Kullback-Leibler Divergence between Markov Chains

In [31] the authors derive an expression for the Kullback-Leibler divergence between two continuous-
time Markov chains q and p defined on a common state space X. For any integer N > 1 let q(N)

resp. p(N) be the time discretisations of q and p with time step δt = T/N. These define probability
distributions on XN+1 with KL divergence

KL(q(N) ‖ p(N)) =
∑

n
q0(n) log

q0(n)
p0(n)

+

N∑
i=1

∑
n,m

q(N)
i−1(n) q(N)

i (m | n) log
q(N)

i (m | n)

p(N)
i (m | n)

(B1)
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The transition rates are related to the discrete-time transition probabilities as follows:

q(N)
i (n | n) = 1 − (δt) q←n(t(i)) + o(δt) (B2)

q(N)
i (m | n) = (δt) qm←n(t(i)) + o(δt) (m , n) (B3)

where t(i) = iT/N is the i-th discretisation time point. Using these identities for q and p it can be
verified that the KL divergence (B1) converges to the following as N → ∞:

KL(q ‖ p) = KL(q0 ‖ p0) −
∫ T

0
dt

∑
n

qt(n) (q←n(t) − p←n(t))

+

∫ T

0
dt

∑
m,n

qt(n) qm←n(t)(log qm←n(t) − log pm←n(t)) (B4)

In general the KL divergence can be written as the difference of the cross-entropy H(q; p) and
the entropy H(q; p), and we define the cross-entropy of two continuous-time Markov chains as

H(q; p) = H(q0; p0) +

∫ T

0
dt

∑
n

qt(n) p←n(t) −
∫ T

0
dt

∑
m,n

qt(n) qm←n(t) log pm←n(t). (B5)

The above derivation is valid only if qm←n , 0 implies pm←n , 0; otherwise the cross-entropy and
KL divergence are both infinite.

This definition of the cross-entropy generalises to the case where q is not Markovian, e.g. when
it is the projection of a Markov process. In the discrete-time case we have

H(q̃(N); p(N)) = H(q̃0; p0) −
N∑

i=1

∑
ñ,m̃

q̃(N)
i−1(ñ | q0) q̃(N)

i (m̃ | ñ, q0) log p(N)
i (m̃ | ñ), (B6)

where the marginal and conditional distributions of q̃ depend on the initial distribution of q since
q̃ is no longer assumed to be memoryless. Expressing the transition probabilities for p in terms of
transition rates using Eqs. (B2) and (B3), as well as the identities

q̃(N)
i (ñ | ñ, q0) = 1 − (δt) q̃←ñ(t(i)) + o(δt), (B7)

q̃(N)
i (m̃ | ñ, q0) = (δt) qm̃←ñ(t(i)) + o(δt), (m̃ , ñ) (B8)

which follow from the definition of the marginal transition rates in Eq. (12), we obtain

H(q̃(N); p(N)) = H(q̃0; p0) +

N∑
i=1

∑
ñ

q̃(N)
i−1(ñ | q0)

1 − (δt)
∑
m̃,ñ

q̃m̃←ñ(t(i))

 log

1 − (δt)
∑
m̃,ñ

pm̃←ñ


− (δt)

N∑
i=1

∑
ñ

q̃(N)
i−1(ñ | q0)

∑
m̃,ñ

q̃m̃←ñ(t(i)) log pm̃ | ñ(t(i)) − N log(δt) + o(δt). (B9)

The term N log(δt) is independent of p and we will renormalise it to 0; this is standard when deriving
continuum-limit versions of many information-theoretic quantities and was implicitly used in our
definition of the cross-entropy in Eq. (B5). Proceeding with the above equation to get

H(q̃(N); p(N)) ≈ H(q̃0; p0) + (δt)
N∑

i=1

∑
ñ

q̃(N)
i−1(ñ | q0)

(
q̃←ñ(t(i)) − p←ñ(t(i))

)
− (δt)

N∑
i=1

∑
ñ

q̃(N)
i−1(ñ | q0)

∑
m̃,ñ

q̃m̃←ñ(t(i)) log pm̃ | ñ(t(i)) − N log(δt) + o(δt).

which, after dropping the N log(δt) term and rearranging, yields Eq. (9)in the limit.
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C Likelihoods of Reduced Trajectories

Let q be a continuous-time Markov chain defined on the discrete state spaceXwith initial distribution
q0, and let q̃ be its projection onto X̃. Computing the log probability of a trajectory ñ[0,T ] under q̃
requires integrating over all possible full trajectories n[0,T ] = (ñ[0,T ], z[0,T ]) that are compatible with
ñ[0,T ], that is,

q̃(ñ[0,T ]) =

∫
z[0,T ]

q(ñ[0,T ], z[0,T ])dz[0,T ]. (C1)

In order to compute the integral on the right-hand side we consider the time-discretisations of q and
q̃. The marginal likelihood in this case can be obtained using the well-known forward algorithm for
HMMs, which sequentially computes the joint probabilities q(N)(ñ0:i, zi):

q(N)(ñ0, z0) = q0(ñ0, z0), (C2)

q(N)(ñ0:i+1, zi+1) =
∑

z
q(N)(ñ0:i, zi = z) q(N)(ñi+1, zi+1 | ñi, zi = z). (C3)

Using (B2), (B3) we can write the second equation as

q(N)(ñ0:i+1, zi+1) = q(N)(ñ0:i, zi = zi+1)
(
1 − (δt) q←(ñi,zi+1)(t(i))

)
+ (δt)

∑
z,zi+1

q(N)(ñ0:i, zi = z) q(ñi,zi+1)←(ñi,z)(t(i)) + o(δ) (ni+1 = ni), (C4)

q(N)(ñ0:i+1, zi+1) = (δt)
∑

z
q(N)(ñ0:i, zi = z) q(ñi+1,zi+1)←(ñi,z)(t(i)) + o(δ) (ni+1 , ni). (C5)

Here the two cases correspond to no visible jump and a visible jump occurring at the i-th step,
respectively. Eq. (C4) can be reorganised as

q(N)(ñ0:i+1, zi+1) = q(N)(ñ0:i, zi = zi+1) + (δt)
∑

z,zi+1

q(N)(ñ0:i, zi = z) q(ñi,zi+1)←(ñi,z)(t(i))

− (δt)
∑

z,zi+1

q(N)(ñ0:i, zi = zi+1) q(ñi,z)←(ñi,zi+1)(t(i))

− (δt)
∑

n,ni+1

∑
z

q(N)(ñ0:i, zi = zi+1) q(ñ,z)←(ñi,zi+1)(t(i)) + o(δ), (C6)

Here the first and second sums correspond to hidden reactions that do not change ñ and the last double
represents visible reactions that affect ñ. Expressing the transition rates for the visible reactions in
terms of the reaction propensities σ j and taking the continuum limit δt → 0 now yields Eqs. (22)-
(24).

To arrive at Eqs. (26)-(28) we sum Eqs. (22)-(24) over all z. Marginalising Eq. (22) immediately
yields Eq. (26), and for the other two we obtain

d
dt

∑
zt

q(ñ[0,t], zt) =
∑

zt

∑
z′,zt

(
q(ñt ,zt)←(ñt ,z′) q(ñ[0,t], z′) − q(ñt ,z′)←(ñt ,zt) q(ñ[0,t], zt)

)
−

∑
i vis.

∑
zt

σi(ñt, zt) q(ñ[0,t], zt), (C7)

lim
t↘tk

∑
zt

q(ñ[0,t], zt) = lim
t↗tk

∑
zt

σ jk (ñk, z̃t) q(ñ[0,t], z′). (C8)
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The first double sum in Eq.(C7), corresponding to all hidden reactions, vanishes. Write the joint
distributions in terms of conditional distributions as

qt(ñ[0,t], z) = qt(ñ[0,t]) qt(z | ñ[0,t], q0) (C9)

where we explicitly include the dependence on the initial distribution. We arrive at

d
dt

q(ñ[0,t]) = −
∑
i vis.

∑
zt

σi(ñt, zt) q(zt | ñ[0,t], q0) q(ñ[0,t]), (C10)

lim
t↘tk

q(ñ[0,t]) = lim
t↗tk

∑
zt

σ jk (ñk, z̃t) q(z′ | ñ[0,t], q0) q(ñ[0,t]). (C11)

We recognise the sum over zt as a conditional expectation:

d
dt

q(ñ[0,t]) = −
∑
i vis.

Ezt

[
σi(ñ(t), zt) | ñ[0,t], q0; t

]
q(ñ[0,t]), (C12)

lim
t↘tk

q(ñ[0,t]) = lim
t↗tk

Ezt

[
σi(ñ(t), zt) | ñ[0,t], q0; t

]
q(ñ[0,t]). (C13)

The two equations rearrange to yield (27) and (28).

D Marginal distributions after reduction

In this section we compute the marginal distributions of a projected reaction network q̃:

d
dt

q̃t(ñ) =
d
dt

∑
z

qt(ñ, z) =
∑

i

∑
z

(
σi(ñ− S̃i, z − Sz

i ) qt(ñ− S̃i, z − Sz
i ) − σi(n) qt(ñ, z)

)
(D1)

=
∑

i

∑
z

(
σi(ñ− S̃i, z − Sz

i ) qt(z − Sz
i | ñ− S̃i) q̃t(ñ− S̃i) − σi(n) qt(z | ñ) q̃t(ñ)

)
(D2)

=
∑

i

(
E

[
σi(ñ− S̃i, z − Sz

i ) | ñ− S̃i; t
]

q̃t(ñ− S̃i) − E [σi(n) | ñ; t] q̃t(ñ)
)
. (D3)

This corresponds exactly to the CME for the reduced system with propensities given by Eq. (14). As
a result, the marginal distributions of the optimal reduction p and q̃ agree at all times.
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