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Abstract

We propose two strategies to improve the quality of tractography results com-
puted from diffusion weighted magnetic resonance imaging (DW-MRI) data.
Both methods are based on the same PDE framework, defined in the cou-
pled space of positions and orientations, associated with a stochastic process
describing the enhancement of elongated structures while preserving crossing
structures. In the first method we use the enhancement PDE for contextual
regularization of a fiber orientation distribution (FOD) that is obtained on indi-
vidual voxels from high angular resolution diffusion imaging (HARDI) data via
constrained spherical deconvolution (CSD). Thereby we improve the FOD as
input for subsequent tractography. Secondly, we introduce the fiber to bundle
coherence (FBC), a measure for quantification of fiber alignment. The FBC
is computed from a tractography result using the same PDE framework and
provides a criterion for removing the spurious fibers. We validate the proposed
combination of CSD and enhancement on phantom data and on human data,
acquired with different scanning protocols. On the phantom data we find that
PDE enhancements improve both local metrics and global metrics of tracto-
graphy results, compared to CSD without enhancements. On the human data
we show that the enhancements allow for a better reconstruction of crossing fiber
bundles and they reduce the variability of the tractography output with respect
to the acquisition parameters. Finally, we show that both the enhancement of
the FODs and the use of the FBC measure on the tractography improve the
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stability with respect to different stochastic realizations of probabilistic tracto-
graphy. This is shown in a clinical application: the reconstruction of the optic
radiation for epilepsy surgery planning.

1 Introduction

Diffusion weighted magnetic resonance imaging (DW-MRI) is a non-invasive
technique for the characterization of biological tissue microstructure [1]. In
brain white matter, water molecules diffuse predominantly along axonal fibers.
This results in an observable macroscopic orientation dependence in the DW
signal, that is measured by scanning the tissue in multiple orientations and
gradient strengths. To model the angular anistropy of the diffusion profile,
diffusion tensor imaging (DTI) [2] is widely used, but this has the limitation
that only a single fiber direction can be estimated per voxel [3]. It is estimated
in [4] that more complex fiber configurations occur in approximately 90% of the
white matter voxels. To overcome this, high angular resolution diffusion imaging
(HARDI) techniques are used, that can describe more complex (crossing) fiber
configurations. An overview of HARDI techniques can be found in [5]. Here we
use the method of constrained spherical deconvolution (CSD) [6], that from the
initial diffusion data constructs a fiber orientation distribution (FOD), which
models the distribution of fibers along different directions.

Tractography methods are often used in the DW-MRI pipeline to provide in-
sight in the structural connectivity of the white matter bundles. Independently
of the model used for interpreting the DW-MRI data, noise originating from the
scanner, acquisition artifacts and partial volume effects [7] are likely to result
in spurious (aberrant) fibers in the tractography output. To improve the data
on which the tractography is performed, different regularization methods can
be used. Methods exist that apply filtering for the reduction of noise directly
on the DW-MRI data [8–10], other methods aim to regularize the DTI tensor
fields [11–15]. On HARDI data the regularization can be performed on individ-
ual voxels [16–18] or in combination with the local spatial information [19–23].

We introduce two new strategies based on the same underlying principle to
improve fiber alignment in tractography results, in order to have more reliable
information on the structural connectivity of brain. First we perform contex-
tual regularization to the FOD obtained with CSD, see Fig. 1A, and secondly
we introduce a fiber to bundle coherence (FBC) measure that can be applied
to any fiber bundle to classify and remove spurious fibers, see Fig. 1B. Both
approaches are based on a partial differential equation (PDE) framework intro-
duced in [24–27], where the Fokker-Planck equation of a stochastic process for
enhancement of elongated structures is considered. These type of PDE-based
enhancement methods have been widely used for the processing of 2D-images.
In this framework, images are represented in the extended space of positions
and orientations via a stable invertible orientation score [28], that associates
to every location an orientation distribution of the local image features (lines
and contours). Then, the stochastic processes for contour completion [29–34]
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Figure 1: The proposed pipeline of the paper. CSD is used to estimate
an FOD from DW-MRI data. The FOD is enhanced (A) with PDE techniques.
Then a deterministic or probabilistic tractography is applied to the (enhanced)
FOD (probabilistic shown here, with coloring indicating the fiber direction).
In the lower right figure, we applied our coherence quantification method (B),
based on the same PDE framework, which shows that blue fibers are well aligned
(high Fiber to Bundle Coherence (FBC)) and yellow fibers are spurious (low
FBC). The green arrows indicate the steps in which the contextual PDEs are
used.

and contour enhancement [35–37] (see Fig. 2A) on this extended space R2 oS1

induce crossing preserving completion and enhancement of lines [28].
The DW-MRI data that we use is naturally defined on the coupled space

R3oS2 of 3D positions and orientations. As in the 2D case, crossing preserving
enhancement of line structures is required, for which we use the 3D extension
of the 2D stochastic process for contour enhancement, introduced in [25]. The
linear PDE corresponding to this stochastic process can be solved by convolution
of the initial condition with the kernel of the PDE. This kernel is also a function
on the position-orientation space and can be seen as a transition distribution
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Figure 2: Stochastic interpretation of the contour enhancement ker-
nels. A. Accumulation of 300 sample paths drawn from the underlying stochas-
tic process of the contour enhancement PDE in R2 o S1, projected on the xy-
plane. B. The contour enhancement kernel arises from the accumulation of
infinitely many sample paths. The gray-scale contours indicate the marginal
of the kernel, obtained by integration over S1, the red glyphs are polar graphs
representing the kernel at each grid point. C. The contour enhancement kernel
oriented in the positive z-direction in R3 o S2 can be visualized on a grid with
glyphs that in this case are spherical graphs.

from the origin (in position and orientation) to neighboring elements. From
the stochastic point of view, the kernels arise as limits of the accumulation of
infinitely many sample paths drawn from the stochastic process, illustrated in
Fig. 2A. For mathematical details of the underlying stochastic processes of the
PDEs, see [27, §10.1]. The general idea needed for this article is sketched in Fig.
2. In Figs. 2B and 2C we show the contour enhancement kernel using glyph
visualization on a grid, each glyph being a polar (red, 2D) or spherical (blue,
3D) graph plot where in every orientation the (spherical) radius is proportional
to the value of the kernel. This type of visualization is used throughout the
paper for functions defined on the space of positions and orientations.

Recently, many authors [23,25,27,34,38–42] demonstrated the advantages of
contextual processing of DW-MRI data. The general rationale behind contex-
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tual processing is to include alignment of local orientations and their surround-
ings (i.e. the context) on the coupled space of positions and orientations. For
this alignment of local orientations, roto-translations are needed, which imposes
a non-Euclidean structure in the PDE-based processing as we explain in Section
2.2. More details on the embedding of R3 o S2 in the roto-translation group
SE(3) can be found in [25]. This demonstrates how either the completion or
enhancement PDEs can be used to extrapolate DTI information to increase the
angular resolution and resolve some fiber crossings. This idea was shown to be
promising in clinical experiments [38,39], but in some cases extreme parameters
had to be set to obtain clear maxima at crossings (where DTI data is inade-
quate). Therefore in this paper we introduce and test the combination of CSD
with contextual enhancements. The method proposed in [34] uses an advection-
diffusion equation (that we called contour completion above) to improve HARDI
data to obtain connectivity measures. In our work we rely on a purely diffusive
process, contour enhancement, which in contrast to contour completion does not
suffer from singularities [27] and is less sensitive to small perturbations of the
initial conditions. This property makes the enhancement process more suited
to be combined with the sharp angular distributions produced by CSD. As the
methods mentioned above still result in broad angular distributions, they need
to be combined with some sharpening method. To this end, a geometric mor-
phological sharpening based on erosions was presented in [23, 27, 42]. Another
related method presented in [40, 41] is the so-called fiber continuity model in
which purely spatial regularization is considered in combination with spherical
deconvolution as alternative to the non-negativity constraint in the classical
CSD [43]. In Section 2.2 we demonstrate the importance of including also an
angular regularization term.

1.1 Contributions

The first contribution of this article is to study the combination of the widely
used CSD method with a regularization induced by the enhancement PDE act-
ing on the FOD. Since the FOD obtained with CSD consists of sharp angular
profiles, it is well-suited as an initial condition for the enhancement PDE, that
typically has a smoothing effect on the orientation distributions. The contex-
tual regularization method reduces non-aligned crossings in the FOD, allowing
for a better alignment of fibers when tracking is applied on the enhanced FOD.
We show that this method is therefore useful to reduce the number of false
positive fibers, but mainly to find more true positives in the tractography out-
put. Although in this paper we compare to the classical CSD method, the PDE
enhancements can also be applied to extensions of this method [44–48].

The second contribution of this article is to introduce the fiber to bundle
coherence (FBC) measure. The motivation for this measure is that, especially
probabilistic, tracking methods typically produce spurious fibers that should be
removed from the tractography. In contrast to the first approach, this method
serves as a post-processing tool. For the computation of the FBC we regard the
fiber bundle as a set of oriented points, by considering for every fiber point also
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the local tangent to the fiber. We construct a density using the enhancement
PDE with an initial condition that is a sum of superposed δ-distributions at
every oriented point in the bundle. The construction of such a density from
tracks relates to track density imaging [49] and track orientation density imaging
[50], though here the use of the contour enhancement kernels, Fig. 2, allows to
use a sparse set of fiber tracks. The FBC, a measure for spuriousness of fibers,
is computed by efficient integration of this fiber-based density. Fibers that are
most spurious according to the FBC can be removed from the tractography,
resulting in a better aligned fiber bundle. Complementary to the first method,
this FBC measure has the purpose to remove false positives in a tractography.

1.2 Structure of the Article

Section 2 covers theory of the individual parts of the pipeline as outlined in
Fig. 1, consisting of CSD, PDE enhancements, tractography and coherence
quantification in Sections 2.1-2.4, respectively. In Section 3 we provide extensive
validation of the combination of CSD and PDE enhancements and the FBC,
using three experiments:

1. First we use the Tractometer evaluation system [51, 52] on the ISBI 2013
HARDI reconstruction challenge dataset [53], a digital phantom with
known ground truth, to demonstrate how contour enhancement improves
both the local FOD reconstruction and the global connectivity of fiber
bundles compared to CSD, see Section 3.1.

2. In Section 3.2 we show on a human DW-MRI dataset, containing different
crossing bundles, that CSD combined with enhancements yields an FOD
that is more robust with respect to the b-value and the number of gradient
directions used in the acquisition. Furthermore, we make a comparison
with earlier work involving erosions and nonlinear diffusion of FODs di-
rectly applied to a DTI-model [23, 27], that was based on the same data.
We show that with our method the glyphs are sharper at the locations
where bundles cross.

3. Finally in Section 3.3, we show an experiment with clinical data in which
we reconstruct the optic radiation (OR) to determine the position of the
tip of the Meyer’s loop, that is of interest in epilepsy surgery planning [23,
54–57]. Accurate estimation of this position is difficult due to the presence
of spurious fibers in the reconstruction of the OR. We show that both the
FOD enhancement and the FBC measure, see Fig. 1, and in particular the
combination of the two allow for a more stable determination of the tip of
the Meyer’s loop. Here ‘more stable’ means less variation with respect to
stochastic realizations in the probabilistic tractography results.

Conclusions and a discussion can be found in Section 4.
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2 Methods

In this paper it is assumed that we have HARDI data as input, from which
we derive an FOD U that models the orientation of fibers in each voxel, i.e.
U : R3 × S2 → R+. For this we use CSD [6], concisely described in Section
2.1, as it gives sharp angular profiles and is able to distinguish multiple fiber
directions within a voxel.

Then we use the enhancement PDE for diffusion of the FOD U , coupling spa-
tial and angular information. The combination of CSD and such enhancement is
a powerful method to obtain an enhanced FOD in which the coherence inherent
in the data is included, providing a more coherent input for the tractography.
The enhancement technique is explained in Section 2.2.

We use the MRtrix algorithm [6] for both deterministic and probabilistic
tractography to estimate the structural connectivity in the brain. In the de-
terministic tractography, fiber tracks are obtained by integrating a directional
field, given an initial position and direction. The directional field is given by
the locally maximal orientations in the glyphs. In contrast to deterministic
tractography, the probabilistic tractography method of MRtrix samples the ori-
entations from the entire FOD and does not use just the maxima. More difficult
paths can be reconstructed than with deterministic tracking, but typically also
many spurious fibers are produced due to the probabilistic sampling. Both
the deterministic and the probabilistic method are explained in more detail in
Section 2.3.

In Section 2.4 we introduce our new technique to quantify the coherence of
fibers with respect to all the fibers in a bundle, based on the same PDE theory
as employed for the contextual enhancement in Section 2.2. We explain how
the kernel of the enhancement PDE is used to construct a tractography-based
density, how the FBC is computed and how this measure is able to classify
spurious fibers in a tractography.

2.1 A Brief Review of CSD

In CSD it is assumed that at each voxel position y the measured signal Sy :
S2 → R can be represented by a spherical convolution of the FOD fy : S2 → R
with a response function K : S2 → R, that is estimated from the data [58]. Since
the spherical deconvolution to determine the FOD is ill-posed, a non-negativity
constraint is included as in [43, 59]. Then, given the signal Sy(n) for a sample
of orientations n ∈ S2, the solution of CSD is found by iteratively solving the
minimization problem:

f i+1
y (n) = argmin

g∈L2(S2)

∫
S2

|(K ∗S2 g)(n)− Sy(n)|2dσ(n)︸ ︷︷ ︸
Data Driven

+λ2

∫
S2

|(Lfiy(g))(n)|2dσ(n)︸ ︷︷ ︸
Regularization

,

(1)
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for i = 1, . . . , imax, with imax the maximum number of iterations. Here K ∈
L2(S2) is aligned with and symmetric around the z-axis, the convolution ∗S2

is the usual S2 spherical convolution [60], dσ(n) is the Jacobian of the sur-
face measure in orientation n and λ is a parameter to influence the trade-off
between the data driven term and regularization term. The linear operator
Lh : L2(S2) → L2(S2) in the regularization term gives the non-negativity con-
straint and is defined by:

(Lhf)(n) = f(n)H(τh − h(n)), for given h ∈ L2(S2), (2)

where H is the Heaviside function and τh is a threshold equal to a fixed factor
τ times the mean of h. The initial function f0

y for the iteration is computed
by taking only the data driven term of Eq. (1). The iteration stops when
successive iterations yield the same result, typically after 5 to 10 iterations [59].
Throughout the paper, we call U the FOD obtained by

U(y,n) = f imax
y (n). (3)

In practice CSD is performed using spherical harmonics with a maximal
spherical harmonic order of 8 (lmax = 8) as discussed in [61].

Improvements to the original CSD exist to modify and improve the response
function, either by recursive calibration or auto-calibration [44, 45], by using
multiple acquisition shells [46] or by including anatomical data [47, 48]. The
latter two methods aim to reduce the partial volume effects, where CSD is likely
to produce spurious fiber orientations. These partial volume effects can occur
when in a voxel multiple tissues or multiple bundles with different orientation
are present. Here we use the classical CSD as it is the basic technique available
in several neuroimaging packages. However, we stress that our method is not
restricted to this type of CSD. In any case, our method aims to reduce non-
aligned crossings in the FOD, also the ones induced by partial volume effects,
as we will show in several experiments in this paper. Further improvement of
the methodology can be expected when including recently extended and more
elaborate CSD techniques [45,46,48], but this is left for future work.

2.2 Contour Enhancement (Step A)

To improve alignment of neighboring glyphs of the FOD U , recall the glyph field
visualization in Figs. 1 and 2C, we apply contextual enhancements. Before we
specify the PDE we consider for this enhancement, we first need to express the
notion of alignment in mathematical terms. To this end, let us consider Fig. 3,
where it is shown that the notion of alignment cannot be supported by a decou-
pled, flat Cartesian product R3×S2 with the combined Euclidean distance. It is
clear that the green bar at (y1,n1) is better aligned with the gray bar at (y0,n0)
than the orange bar at (y2,n2), even though the distances in the space R3×S2

are equal, i.e.
√
d2
R3(y0,y1) + d2

S2(n0,n1) =
√
d2
R3(y0,y2) + d2

S2(n0,n2). This

means that in order to appropriately describe the concept of alignment, we must
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consider more than just the amount of spatial displacement and the amount of
change in orientation. Coupling these two types of motion (via rigid body mo-
tions) is a solution to this problem [25]. The coupling follows very naturally by
expressing the motion of an oriented particle (y,n) in terms of a moving frame
of reference determined by its orientation. That is, spatial movement along
the orientation n should be much cheaper than spatial movement in the plane
orthogonal to n. This creates a natural anisotropy for spatial movement. For
angular motion we need isotropy. This extra structure can be obtained by em-
bedding the space of positions and orientations in the rigid body motion group.
This means that an element (y,n) ∈ R3 × S2 is identified with the rigid body
motion (y,Rn), where Rn is any rotation matrix such that Rnez = n, with
ez ∈ S2 pointing to the north pole. We denote this space of coupled positions
and orientations by R3 o S2, so we have

R3 × S2 3 (y,n)↔ (y,Rn) ∈ R3 o S2. (4)

The group R3 o S2 is equipped with the following (non-commutative) group
product:

(y,R)(y′,R′) = (y + Ry′,RR′). (5)

This product moves oriented elements in a shift-twist fashion, rather than by a
rotation followed by an independent translation. Due to this shift-twist group
product in Eq. (5), we automatically express motion of oriented particles in
terms of a moving frame in R3 o S2, which makes this space well-suited for the
application of our contextual enhancements. Nevertheless, in the remainder of
this article this space can still be regarded as the Cartesian 5D space R3 × S2,
where we secured the coupling of positions and orientations via our specific
choice of differential operators and diffusions that are applied.

To improve alignment of FOD glyphs, we use a particular diffusion process
called contour enhancement that uses both spatial and angular diffusion in the
extended space of positions and orientations [25]. Given a structure (think of
a fiber bundle) in this space, see Fig. 4, we apply spatial diffusion only in the
direction of the structure, not in the spatial plane perpendicular to it. Angular
diffusion is applied in the plane tangent to S2 at the point n. This diffusion
process enhances elongated structures, while preserving crossing structures, and
is given by a Fokker-Planck type of system, a linear diffusion equation on R3oS2.
For t ≥ 0, y ∈ R3, n ∈ S2 this system can be expressed as:{

∂tW (y,n, t) =
(
D33(n · ∇y)2 +D44∆S2

)
W (y,n, t),

W (y,n, 0) = U(y,n).
(6)

Here W (y,n, t) is a scale space representation in (R3oS2)×R+ [62]. The symbol
∇y denotes the gradient with respect to the spatial variables and ∆S2 is the
Laplace-Beltrami operator on the sphere. Parameters D33 > 0 and D44 > 0 are
related to the amount of spatial and angular diffusion, respectivly. Parameter
t ≥ 0 is the diffusion time of the contour enhancement process. It can be seen
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(y0,n0)

(y1,n1)

(y2,n2)

Figure 3: The concept of alignment requires a coupling of positions
and orientations. The pair of position and orientation (y0,n0) is better
aligned with (y1,n1) than with (y2,n2), even though spatial and angular dis-
tances are equal. Formally we can say that the sub-Riemannian distance on
R3 o S2 [27] is smaller between (y0,n0) and (y1,n1).

n

R3 S2

n Tn(S
2)

0

ez

y

Figure 4: Diffusion in the space of positions and orientations. Spatial
diffusion is applied in the direction of the fiber (left), angular diffusion is applied
in the tangent plane perpendicular to the fiber direction (right).

as a Brownian motion process, recall Fig. 2A, where particles are allowed to
spatially move back and forth in the direction they are heading, or change their
direction, but are not allowed to step aside (comparable to the movement of a
car).

We refer to the solution of Eq. (6) as the enhanced FOD. It can be obtained
via a finite difference scheme [63], or via a convolution with a kernel pt : R3 o
S2 → R+:
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W (y,n, t) = (pt ∗R3oS2 U) (y,n)

=

∫
S2

∫
R3

pt((Rn′)T (y − y′),RT
n′n) · U(y′,n′) dy′dσ(n′).

(7)

A basic approximation to the exact Green’s function of the contour enhancement

PDE is known [25] and can be written as the product of Green’s functions pR
2oS1

t

in the following way:

pt(y,n) =
8√
2
D33t

√
πtD44·pR

2oS1

t (z/2, x, β) · pR
2oS1

t (z/2,−y, γ), (8)

with n = n(β, γ) = Rex,γRey,βez = (sinβ,− cosβ sin γ, cosβ cos γ)T , β ∈
[−π, π), γ ∈ (−π2 ,

π
2 ). The R2 o S1 kernels are given by

pR
2oS1

t (x, y, θ) =
1

32πt2D44D33
e−

√
EN(x,y,θ)

4t , (9)

with

EN(x, y, θ) =

(
θ2

D44
+

1

D33

(
θy

2
+

θ/2

tan(θ/2)
x

)2
)2

+
1

D44D33

(
−xθ

2
+

θ/2

tan(θ/2)
y

)2

.

(10)

To avoid numerical errors, we use the estimate θ/2
tan(θ/2) ≈

cos(θ/2)
1−(θ2/24) for |θ| < π

10 .

This approximation is easy to use and allows for efficient implementation [64].
From the approximation kernel in Eq. (8) it can be seen that problems could

occur when either D33 = 0 or D44 = 0. To this end, a necessary and sufficient
condition for the existence of a smooth solution kernel for the evolution process
in Eq. (6) is given by the Hörmander requirement [65]. This condition applies to
more general situations than the one here, see e.g. [25], but for the specific case
of contour enhancement the requirement is satisfied iff D33, D44 > 0. Setting
D44 = 0 would result in a singular non-smooth kernel, which has numerical
disadvantages. More importantly, apart from this theoretical issue the need for
both spatial and angular diffusion can also be argued from a practical point of
view, as is illustrated in Fig. 5. We use an artificial example in which a curved
fiber bundle is present, shown in the left figure. When the input is diffused with
D44 = 0 as in the middle of Fig. 5, the peaks stay distinct and point in the
wrong direction. On the other hand, when D44 > 0 as in the right figure, due
to the angular diffusion the peak is redirected and the glyphs lie better aligned
with the fiber bundle. Hence D44 > 0 is needed to ensure the crucial interaction
between different orientations. Finally we recall the relation between Tikhonov
regularization and diffusion, see e.g. [25, Thm 2], which allows us to connect
diffusion with D44 = 0 with the fiber continuity model in [40, 41]. This model
does not suffer from the inconvenience of considering only spatial regularization,
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Figure 5: The importance of including angular diffusion. (Left) artificial
input data of a curved bundle. (Middle) diffusion with D33 > 0, D44 = 0.
(Right) contour enhancement with D33, D44 > 0. Fiber propagation with D44 =
0 leads to crossing artefacts rather than smooth fiber enhancement.

as they represent the FOD in a truncated spherical harmonic basis. When the
enhancements are used in combination with probabilistic tractography, we first
apply a standard sharpening deconvolution transform to the FOD as described
in [18], to maintain the sharpness of the FOD.

2.3 Tractography

As the next step in the pipeline we use the MRtrix tractography algorithm [6], as
implemented in http://www.brain.org.au/software/index.html#mrtrix, version
0.2.12. It allows us to perform deterministic and probabilistic fiber tracking
on spherical harmonic representations of the (enhanced) FOD. To have a fair
comparison between trackings on the FOD and the enhanced FOD, we use the
parameter settings as explained next.

• In the deterministic tracking of MRtrix, seed points are randomly selected
from a seed region. The initial direction is sampled randomly and every
next step follows the direction of the most aligned FOD maximum. If this
maximum is below a threshold value, the fiber terminates. This threshold
(cutoff) is set to 10% of the maximal angular response of the FOD. There
is no constraint on the maximal curvature of the fibers. To prevent that
fibers have an initial direction that is not aligned with the fiber bundle,
we force the initial direction to be approximately in the direction of the
maximal FOD peak, by setting the initial cutoff to 0.9. The step size is
set to 1/10th of the voxel size as is suggested in [6]. Tracks proceed in
both directions from the seed point and terminate either when they hit the
boundary of the volume or mask (if applicable), or due to the threshold
stopping criterion.

• In the probabilistic case, starting from the seed region, every next step
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follows a direction randomly sampled from the FOD. Here we set the
minimal radius of curvature to 1 mm, the default value in the MRtrix
algorithm. Optionally, a target region of interest is used to select only
those fibers that cross this region.

We base our choice for deterministic tractography or probabilistic tracto-
graphy on the application. If only a seed region is specified, as in Sections 3.1
and 3.2, we use deterministic tractography. In this case there is too much free-
dom in the probabilistic algorithm and the streamlines show a lot of spurious
behavior. Here, a probabilistic approach could make sense if extreme amounts
of tracks are used for track density methods. As we do not pursue these meth-
ods here, we prefer to use deterministic tractography. If both a seed region
and an end region are specified, as in the optic radiation application in Section
3.3, we prefer to use probabilistic tractography. It is known that deterministic
tractography in this case provides only a few of the possible pathways from the
seed to the end region, whereas reconstructions with probabilistic tractography
are much fuller.

Probabilistic tractography results typically contain many false positive fibers.
Streamlines that are anatomically implausible can be removed with scoring
methods [23,56] or by imposing anatomical constraints. Even when using these
methods, the filtered tractography output can still contain fibers that deviate
from the fiber bundle and are likely to be spurious. In the next section, we pro-
pose a coherence measure for fibers in a fiber bundle in order to classify these
spurious fibers.

2.4 Coherence Quantification of Fiber Bundles (Step B)

In this section we introduce our second contribution of the paper, a fiber to
bundle coherence (FBC) measure to quantify the coherence of each fiber with
respect to all other fibers in the bundle, recall Fig. 1B. A spurious fiber, as
schematically shown in Fig. 6, is isolated from or poorly aligned with the bulk
of the tracks and is therefore unlikely to represent the underlying brain structure.
Fibers with low coherence, i.e. a low FBC, can then be classified as spurious.

To classify a fiber as spurious, we first construct a density by regarding
each fiber as a superposition of δ-distributions in R3 o S2 and convolving this
distribution with the kernel in Eq. (8). This density is independent of the
underlying data and is based purely on the collection of fibers Γ. Integration
of this density along a part of length α of a fiber gives a local measure for the
coherence of that part.

Next we explain the mathematical techniques that support the idea in Fig.
6. We denote the fibers from a tractography output by yi(s) ∈ R3, 1 ≤ i ≤ N ,
0 ≤ s ≤ li, with s the arc length parameter, li the total length of fiber i and N
the number of fibers. Now let ni(s) = ẏi(s) be the tangent of the fiber, so that
γi(s) = (yi(s),ni(s)) forms a curve (fiber) in R3 × S2. By construction, ni(s)
points in the forward direction of the fiber. Since in DW-MRI data antipodal
orientations are identified, we also consider γ̄i(s) = (yi(s),−ni(s)). The com-
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Figure 6: Construction of the LFBC. The local fiber to bundle coherence
(LFBC) is constructed for a set of fibers (gray lines), illustrated in 2D for
simplicity, as follows. Every local tangent in the tractography contributes to
the density, by considering it as a δ-distribution. We convolve this with the
contour enhancement kernel, shown on the left for two points, visualized as
in Fig. 2 and with the coloring indicating the contribution of the kernel to
the LFBC. Doing so for all points, fiber points that are isolated from or badly
aligned with other fibers receive low contributions, such as the outlying fiber.
The LFBC along the fibers is displayed on the right.

plete fiber bundle is defined as Γ := {γi | i = 1, . . . , N} ∪ {γ̄i | i = 1, . . . , N}. A
discrete formulation of a fiber i with Ni points is given by:

γji := γi(s
j) = (yi(s

j),ni(s
j)) =: (yji ,n

j
i ), sj =

j − 1

Ni − 1
li, j = 1, . . . , Ni.

(11)

This way there are Ntot = 2
∑N
i=1Ni elements in Γ. Now we regard every

point γji as a δ-distribution in R3 o S2 centered around (yji ,n
j
i ). A density for

the entire bundle is then constructed as follows:

FΓ(y,n) =
1

Ntot

2∑
σ=1

N∑
i=1

Ni∑
j=1

δ(yji ,(−1)σnji )
(y,n), (12)

with index j running over points within a fiber, i running over all fibers and σ
taking care of including forward and backward orientations. We use the same
evolution process as in Eq. (6) in which F = FΓ now serves as initial condition,
to create a diffused density (y,n) 7→WF (y,n, t):{

∂tWF (y,n, t) =
(
D33(n · ∇y)2 +D44∆S2

)
WF (y,n, t),

WF (y,n, 0) = F (y,n).
(13)

We solve the system in (13) by convolution with the corresponding kernel, recall
Fig. 2, and call this the local FBC (LFBC):

LFBC(·,Γ) = WF (·, t) = (pt ∗R3oS2 F )(·), (14)
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with the shift-twist convolution as given in Eq. (7). This is illustrated in Fig.
6 in the 2D case. We can now define the FBC for fiber γi with respect to the
bundle Γ as the integral of this density along the fiber:

FBC(γi,Γ) =
1

li

∫ li

0

LFBC(γi(s),Γ) ds. (15)

This results in a global property of the fiber, but spurious fibers often only
locally deviate from the bundle as in Fig. 6. To this end, we compute for each
fiber the minimum of such integrals along the fiber over intervals of length α:

FBCα(γi,Γ) = min
a∈[0,li−α]

1

α

∫ a+α

a

LFBC(γi(s),Γ) ds. (16)

The parameter α defines the scale over which spuriousness of fibers can be
detected and is much smaller than the average fiber length. Our primary interest
is not the FBCα value itself, but rather how it compares to the average coherence
of fibers in the bundle, so finally we define the relative fiber to bundle coherence
(RFBC) as:

RFBC(γi,Γ) =
FBCα(γi,Γ)

AFBC(Γ)
. (17)

Here AFBC(Γ) is the average fiber to bundle coherence indicating the overall
coherence of the N fibers in the bundle Γ, defined as

AFBC(Γ) =
1

N

N∑
i=1

FBC(γi,Γ). (18)

To summarize, the RFBC(γi,Γ) of a fiber γi in a bundle Γ is a measure for how
well aligned the least aligned part of γi is, compared to the average coherence
of the total bundle.

In practice, we evaluate the convolution in Eq. (14) only in the fiber points.
We compute the LFBC(γki ,Γ), the diffused density in the oriented point γki =
(yki ,n

k
i ), recall the notation in (11), as follows:

LFBC(γki ,Γ) =
1

Ntot

2∑
σ=1

N∑
j=1

Nj∑
q=1

pt

(
RT

(−1)σnqj
(yki − yqj ),R

T
(−1)σnqj

nki

)
, (19)

where Rnlj
is any rotation matrix such that Rnlj

ez = nlj , index q sums the

contributions along a fiber, index j runs over all the fibers and σ as before. The
FBCα can then be computed as follows:

FBCα(γi,Γ) = min
a∈[0,Ni−α]

1

α

a+α∑
k=a+1

LFBC(γki ,Γ), (20)
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where a, α ∈ N in this discrete case, so the LFBC is summed along short intervals
of the fiber. Likewise, the AFBC can be computed as

AFBC(Γ) =
1

N

N∑
i=1

1

Ni

Ni∑
k=1

LFBC(γki ,Γ). (21)

We apply this method in Section 3.3 for quantifying the coherence of tracto-
graphy results of the optic radiation and classifying the spurious fibers.

3 Experiments and Results

In this section we extensively test the performance of our CSD enhancement
method (A) and the FBC method (B), recall Fig. 1 and Sections 2.2 and 2.4,
in three different experiments:

• We use the HARDI Reconstruction Challenge dataset [66], which is arti-
ficial data with known ground truth, to quantitatively evaluate the CSD
enhancement method (A) on deterministic tractography in Section 3.1.

• In Section 3.2 we show on DW-MRI human brain data that the enhance-
ment (A) have a positive effect on deterministic tractography, for different
acquisition protocols of the data. Furthermore, on this DW-MRI dataset
and on the phantom dataset we compare our method to previous work [27],
where a DTI-based FOD is used in combination with nonlinear PDE flow.

• In the third and last experiment, we reconstruct the optic radiation in
human clinical data, see Section 3.3. We include an extensive evaluation
of our methods, the enhancement of the FOD (A) and the use of the FBC
to classify and remove spurious fibers (B), and the combination of both
methods. We show that the reproducibility of the probabilistic tracto-
graphy has increased, resulting in a more stable localization of the tip of
the Meyer’s loop.

For all datasets Mathematica [67] was used to perform the contour enhance-
ment algorithm and the CSD, which in practice produces the same results as the
MRtrix CSD implementation when the same deconvolution kernel is used. MR-
trix software [6] was used to perform fiber tractography. The coherence quantifi-
cation was implemented in C++. In Section 3.1 we make use of the Tractome-
ter [51, 52] (http://www.tractometer.org/) to evaluate tractography results.
Visualization was done in either the FiberNavigator (https://github.com/
scilus/fibernavigator, [68]), Mathematica, or the open source vIST/e tool
(Eindhoven University of Technology, Imaging Science & Technology Group,
http://bmia.bmt.tue.nl/software/viste/).
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3.1 HARDI Reconstruction Challenge

The following experiment is performed on a digital phantom dataset that was
designed for the ISBI 2013 Reconstruction Challenge [66, 69]. It is used in
combination with the Tractometer [51,52], as a benchmark to compare different
reconstruction and tracking methods. The phantom is inspired by the Numerical
Fiber Generator [70] and the code to reproduce it is freely available as part of the
Python package Phantomas (http://www.emmanuelcaruyer.com/phantomas.
php). This synthetic dataset is of size 50 × 50 × 50 voxels with a resolution
of 1 × 1 × 1 mm3. It consists of 27 simulated white matter bundles, designed
to resemble challenging branching, kissing and crossing structures at angles
between 30 and 90 degrees, with various curvature and bundle diameters ranging
from 2 mm to 6 mm. An image indicating the ground truth fiber configuration
is shown in the centre of Fig. 7.

The idea behind the signal simulation is that every voxel is subdivided into
multiple sub-voxels, each one with its own attenuation profile. The final signal
arrives from integrating the contribution of all the sub-voxels. Then, it is pos-
sible to combine multiple compartment types in every voxel with added Rician
noise. This allows for modelling complex configurations as well as taking into
account partial volume effects. While the Numerical Fiber Generator uses a
tensor-like model to simulate the signal in the sub-voxels, Phantomas uses a
CHARMED-based model [71]. The CHARMED model based on the Söderman-
Jönsson cylinder model [72] captures well the non-Gaussian behaviour of the
diffusion signal for large b-values. The main reason why we selected the ISBI
phantom is that it is linked with the Tractometer that allows for performing
quantitative evaluations of the tractography results, using global metrics as
demonstrated in the subsequent experiments.

For the experiments presented in this section we used 64 uniformly dis-
tributed gradient directions using a b-value of 3000 s/mm

2
with different signal

to noise ratios (SNRs). We use spherical harmonics in CSD with maximal order
8, resulting in 45 estimated coefficients on each position. We then enhance the
resulting FOD functions using our contour enhancement algorithm with varying
parameters. From the evolutions described in Eq. (6) we see by a basic rescaling
argument that it is sufficient to vary t and the ratio D33/D44. The larger this
ratio, the more preference the spatial diffusion gets over the angular diffusion, re-
sulting in elongated kernels (visualized by thin glyphs). A smaller ratio D33/D44

is better suited in regions where the curvature of bundles is higher (visualized by
thicker glyphs). The higher the diffusion time t, the more context is taken into
account. When t is too large, fiber bundles with high curvature can be damaged
or false positives could be created. Taking this into consideration, we choose our
parameters as follows: we fix spatial diffusivity parameter D33 = 1.0, we take
the angular diffusivity parameter D44 ∈ {0.005, 0.01, 0.02, 0.04} and diffusion
times t ∈ [0, 5].

Tractography results for the entire dataset are shown in Fig. 7. We can
recognize the positive effect of the enhancements on deterministic tractography:
we see less dropouts, better aligned fibers and better continuation of fibers
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Figure 7: Tractrography results on the ISBI Challenge dataset. De-
terministic tractography results of CSD (left) and enhanced CSD (right) with
SNR = 2 (top) and SNR = 4. The colors correspond to the direction of the
fibers. The dataset consists of crossing, branching and kissing fiber bundles.
The tractography on enhanced CSD results in better aligned fibers and a fuller
reconstruction of the bundles. The ground truth configuration of the bundles is
depicted in the center.

at crossings. An extensive quantification of the performance of our method
is done at the voxel level using the FODs and at the macroscopic level using
tractography in Sections 3.1.1 and 3.1.2, respectively. Both sections support the
results summarized in Fig. 8.

3.1.1 Local Metrics

We compare reconstructed FODs locally with the ground truth using only the
orientation of the peaks. Let M be the set of voxels v in the white matter mask,
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then we denote the ground truth number of peaks in a voxel v by Nv and the
orientations corresponding to the peaks by nvi,true, i = 1, . . . , Nv.

Maxima of the constructed FOD are found by evaluating the FODs on a 60th

order icosahedron tessellation with 18606 antipodally symmetric points, giving
an angular resolution of less than 1 degree. Maxima are taken into account
only if it exceeds a threshold of 0.1, the same value we use as threshold in the
tractography. Let Ovest be the set of peak orientations in voxel v estimated from
the FOD. The average angular error in degrees can then be computed by:

ϑ =

∑
v∈M

Nv∑
i=1

min
n∈Ovest

180

π
arccos(|nvi,true · n|)∑

v∈M
Nv

. (22)

In the top row of Fig. 8 we show the effects contour enhancement for different
ratios of D33 and D44 upon variation of the diffusion time. The results are
given for substantially low SNR levels 10, 6 and 4 and 2. These SNRs are
computed w.r.t. the non-DW image. Specifically, if the b=0 intensity is 1 then
the standard deviation of the Rician noise distribution is 1/SNR. In all cases a
clear improvement is found compared to CSD without enhancements and the
more noise, the more the angular error is decreased. Higher diffusion times give
better results and around t = 5 the angular error is almost stable. It can also
be seen that the combination of CSD with enhancements at lower SNRs gives
lower angular errors than just CSD for the higher SNRs.

There is no significant difference in the FODs between the different D44 val-
ues. Even though it is visible that more angular diffusion leads to fatter glyphs,
for the orientation of the peaks the precise value of D44 is not of great impor-
tance: the angular errors for D44 = 0.005 are slightly smaller, but there is not
much difference with the higher values of D44.

3.1.2 Global Metrics

At the macroscopic level we are interested in the impact of the enhanced lo-
cal reconstruction on the quality of the global connectivity. The deterministic
MRtrix tractography is used as described in Section 2.3, with seeds randomly
selected in the white matter mask. The tracks have a minimum length of 10
mm and new seed points are chosen until 10000 streamlines are selected. For
every FOD, the tractography is repeated five times with the same settings, to
average out the variability in the tracking algorithm output. We then use the
Tractometer [52] to perform a fiber tracking analysis based on the ground truth
and the five results are averaged. The Tractometer outputs values for various
metrics, from which we use the Valid Connections (VC), Invalid Connections
(IC) and No Connections (NC). They indicate the percentage of tracks that
correctly connect, incorrectly connect or do not connect gray matter areas in
the dataset, respectively. We also use the Average Bundle Coverage (ABC),
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Figure 8: Quantitative evaluation of the effect of enhancements. Evo-
lution of the local error and global metrics for three different choices of D44 and
four different SNRs as we increase the diffusion time t. The top row shows the
average angular error of the FOD peaks, the rows below show the average bun-
dle coverage (ABC), connection to seed ratio (CSR) and the valid connection
to connection ratio (VCCR), computed from the tractography results.

the percentage of voxels in a bundle that is crossed by a valid streamline, av-
eraged over all bundles. We combine the (VC), (IC) and (NC) in two metrics
introduced in [73]:

• Connection to Seed Ratio (CSR), which represents the probability that
a generated fiber actually connects two gray matter areas, computed as
100%−NC.

• Valid Connection to Connection Ratio (VCCR), the probability that a
connecting fiber is correct, computed as VC/(VC+IC).
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The results for the ABC, CSR and VCCR with the same enhancement pa-
rameters and SNRs as for the local metric are given in Fig. 8. Similar remarks
hold for the global metrics as for the angular error. For all three metrics and
all SNRs the enhancements lead to an improvement compared to CSD, the only
exception being the ABC for SNR = 10 and D44 = 0.02. Furthermore, as
the SNR decreases, the larger diffusion times are beneficial and the more sig-
nificant the improvement is. The best results are obtained for D44 = 0.005.
We expect that truncation of the spherical harmonics already introduces some
angular smoothing of the FODs on this artificial dataset, explaining the small
effect of D44 in the experiments. Furthermore, we see that the diffusion time t
truly acts as a regularization parameter, resulting in a robustness for the met-
rics with respect to the SNRs: the higher the diffusion time, the smaller the
differences in the metrics between the different SNRs.

Seeding from the white matter voxels can lead to an over-representation of
the number of fibers in longer fiber bundles with respect to the shorter bundles
[74]. The longer bundles thereby have a larger contribution to the global metrics
than the shorter bundles, which could lead to an overestimation of the fiber
bundles. As proposed in [75], we compared the global metrics when seeding from
the gray/white matter interface for CSD and one specific set of enhancement
parameters. The global metrics for that seeding strategy were slightly lower for
CSD and comparable when including enhancements. For the sake of comparing
our enhancement method with CSD, we therefore believe it is fair to use seeding
from the white matter mask.

The convincing improvement in the global metrics is supported by Fig. 9,
that shows a selection of the fiber bundles in the dataset. It can be seen that
after enhancements, there are more valid connections in the green bundle and
less wrong exits in the red bundle, leading to a higher (VCCR) and a better
bundle coverage. The glyphs in the top row show that the enhancements improve
alignment of glyphs, especially at the boundary of the fiber bundles, where the
original CSD result tends to suffer from partial volume effects.

3.2 Evaluation and Comparison on DW-MRI Data

In this experiment we consider a DW-MRI dataset of a part of a human brain,
previously used in [27]. The study was approved by the local ethical commitee
of Maastricht University, and informed written consent was obtained from the
subject. Although the dataset consists of only 10 axial slices, the corpus callo-
sum, corona radiata and superior longitudinal fasciculus are (partly) present in
the data. We show that the combination of CSD and enhancement is well-suited
for different combinations of the b-value and the number of gradient directions
used in the acquisition. Furthermore, we make a qualitative comparison with the
DTI-based method of [27] on this dataset and conclude with a brief quantitative
comparison with this method on the dataset of 3.1.
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Figure 9: Comparison of CSD and enhanced CSD on the ISBI dataset.
The top row shows that glyphs visualizing the FOD are better aligned, especially
at the boundary of the bundle. In this case, color corresponds to the radius of
the glyph. The bottom row depicts the tractography results, showing only the
streamlines that pass through the indicated spheres. Here the SNR = 4 and the
parameters used for the enhancements are D33 = 1.0, D44 = 0.02, t = 4.0. The
ground truth image with the same viewpoint as the bottom figures is depicted
on the left.

3.2.1 Robustness with Respect to the Acquisition Parameters

The acquisition was performed on a 3T Siemens Allegra scanner, with FOV
208x208mm and voxel size 2x2x2mm. During the data acquisition, a brain
region consisting of 10 axial slices was scanned with the following combinations
of b-values and No, the number of orientations: b = 1000 s/mm2 with No =
49, b = 1000 s/mm2 with No = 121 and b = 4000 s/mm2 with No = 49.
We use again CSD with spherical harmonics up to order 8. The higher b-
value is obtained by using a stronger gradient pulse, making the acquisition
more sensitive to detail in the tissue structure, but also inducing a lower SNR.
Increasing the number of gradient directions gives a better angular resolution.
We use deterministic tractography, with three seed regions manually selected
in the middle of the corpus callosum, corona radiata and superior longitudinal
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fasciculus.
In the right column of Fig. 10 we show that after enhancements, the FOD

allows for a more coherent reconstruction of the three bundles. Especially in
the region where the three bundles come together, it can be seen that the fibers
have a better propagation through the crossings. Moreover, the FODs after
enhancements are very similar to each other, visible in the glyph visualization,
leading to three tractography results supporting similar fiber bundles. This is
an improvement with respect to CSD without enhancement, shown in the left
column of Fig. 10. There we find more noisy FODs with more variation between
the different protocols. This is also reflected in the tractography results, that
contain more spurious fibers than after the enhancements.

We conclude, just like in the first experiment on the phantom data, that
applying enhancements induces more robust tractography also on real DW-
MRI data, in this case in the sense that it is less sensitive to the acquisition
parameters b and No.

3.2.2 Comparison with a DTI-based FOD

In the next experiment we compare the performance of our combination of CSD
with enhancements with the method in [27] which proposed to combine DTI
with non-linear PDE-based enhancement obtained from successively applying
erosions and diffusions. Let us briefly describe this method, for details we
refer to [27], and an implementation of the PDE enhancements can be found
in the HARDI package for Mathematica available at (http://bmia.bmt.tue.
nl/people/RDuits/HARDIAlgorithms.zip). First an FOD on positions and
orientations that we call UDTI was constructed via a transformation of the
tensor field D fitted to the data [2], according to the following definition [27,76]:

UDTI(y,n) =
1

4π
∫

Ω

√
det(D(x))dx

.(nTD−1(y)n)−
3
2 . (23)

This FOD is then sharpened with PDE erosions, a type of morphological en-
hancement adapted from [15], on R3 o S2 and regularized with nonlinear diffu-
sions to find crossing structures from DTI.

Previously in [27], the same dataset as in Fig. 10 for acquisition parameters
b = 1000 s/mm2 and No = 49 was processed. Here we compare the FOD
obtained with CSD, that we call UCSD here, with UDTI in the top and bottom
figures, respectively, of Fig. 11. Unlike DTI, which is limited by the Gaussian
assumption of the diffusion profile, CSD can estimate multiple fiber orientations
within a voxel. Furthermore, we see that the large glyphs in the Centrum
Semiovale in the bottom figure are not apparent in UCSD. Applying (linear)
enhancements, as explained in Section 2.2, to UCSD gives the second figure, and
the approach in [27] using erosions/(nonlinear) enhancements applied to UDTI
gives the second figure from below. It can be seen that also the enhanced DTI
glyphs supports multiple fiber directions within voxels via extrapolation [27,38],
but at the cost of high regularization. Another noticeable difference is the fact
that the glyphs in the CSD case are slimmer and crossings are more clearly
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Figure 10: Comparison between CSD and enhanced CSD of tract-
ography on human data. The tractography results on CSD and enhanced
CSD data of the corpus callosum (mostly red), coronia radiata (mostly blue)
and superior longitudinal fasciculus (mostly green), with the color related to
the fiber direction. Enhancements are performed with D33 = 1.0, D44 = 0.02,
t = 4.0. All three bundles are more apparent after enhancements and more
fibers pass the crossings.

defined. Whether two separate maxima are visible at a crossing is less dependent
on the diffusion parameters in the PDE diffusion.

Besides the visual comparison of the FOD glyphs, we provide determinis-
tic tractography results for both procedures in the middle of Fig. 11. It can
be observed that both methods produce reasonable results, although the one
obtained from the enhanced DTI dataset seems oversmoothed and outliers (in-
dicated with the yellow arrow) can occur. This is due to the extreme diffusion
parameters needed to perform the FOD extrapolation. We find that visually the
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Figure 11: Comparison of glyph fields and tractography results be-
tween enhanced CSD and a DTI-based FOD. Glyph visualization of an ax-
ial slice of a dataset supporting the presence of the corpus callosum (mostly red),
corona radiata (mostly blue) and superior longitudinal fasciculus (mostly green).
Contour enhancement for CSD is performed with D33 = 1.0, D44 = 0.02, t = 4.
Erosions and nonlinear diffusions for the DTI-based method are done with pa-
rameters as in [27]. The tractographies corresponding to the two methods are
shown in the middle. Outliers such as the red fiber, indicated by the arrow,
occur due to the use of high regularization coefficients.

combination of CSD and linear enhancements yields better tractography than
DTI combined with erosions and nonlinear enhancements.
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To provide a more quantitative and complete comparison of DTI, DTI and
nonlinear enhancements, CSD and CSD with linear enhancements, we also in-
clude results of the experiment in Section 3.1 for the DTI methods, see Table
1. We heuristically determined good parameter settings for the nonlinear en-
hancement of DTI: erosions [27, Eq. (59)] with D11 = 0.5, D44 = 0.2, t = 2.0
and diffusion [27, Eq. (55)] with D11 = 0.2, D33 = 1.0, D44 = 0.02 and t = 3.
In Table 1 is shown that applying enhancements for contextual regularization
of the FOD is beneficial for both DTI and CSD. The lower the SNR, the more
evident the improvements become. Furthermore, we see that in terms of the
local metric, the angular error θ of the peak orientations, the DTI methods can
compete with the CSD based methods. However, the global metrics are signifi-
cantly higher for CSD based methods. The quantitative results on the phantom
data in Table 1 are in line with the qualitative comparison on real data in Fig.
11.

Table 1: For two SNR values, the results are shown for the DTI method
described in Section 3.2, with or without nonlinear enhancements. We compare
with CSD and a specific instance of enhanced CSD with parameters D33 = 1,
D44 = 0.01, t = 2. For local metric θ lower is better, for the other metrics higher
is better. In boldface are the best results for the DTI and CSD methods.

SNR 4 DTI DTI enh CSD CSD enh
θ (deg.) 33.9 15.2 23.4 16.3
ABC (%) 14.3 18.1 32.9 37.9
CSR (%) 50.2 54.1 57.6 78.2
VCCR (%) 17.5 20.0 32.9 43.5
SNR 10 DTI DTI enh CSD CSD enh
θ (deg.) 23.8 13.0 14.9 11.1
ABC (%) 15.5 19.9 51.6 51.5
CSR (%) 69.1 64.6 82.8 85.5
VCCR (%) 17.1 24.3 56.4 57.2

3.3 Improved Reconstruction of the Optic Radiation

The optic radiation (OR) is a white matter fiber bundle connecting the primary
visual cortex and the lateral geniculate nucleus (LGN), see Fig. 12. The most
anterior part of the OR is called the Meyer’s loop (ML), of which the exact
location is of interest for treatment of temporal lobe epilepsy [23, 54, 56, 57].
During neurosurgery, a part of the temporal lobe is resected. To ensure that
the OR remains intact to prevent visual field defect, it is crucial to know the
distance from the tip of the Meyer’s loop to the Temporal Pole (ML-TP) [55],
which shows large interpatient variability [77].

We use DW-MRI scans of four subjects, performed on a 3.0T Philips Achieva
MR scanner, with b = 1000 s/mm2, No = 32 and a spatial resolution of 2x2x2
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mm. All subjects gave written informed consent; the study was approved by
the Medical Ethics Committee of Maastricht University Medical Center (N
43386.068). The data is acquired from healthy volunteers, and ground-truth
ML-TP distance is not known. Therefore accuracy of this measure of our meth-
ods cannot be checked, instead we focus on consistency and reproducibility. We
apply CSD to the data to construct the FOD, with spherical harmonics up to
order 6 requiring the estimation of 28 coefficients (as 32 directions are insuffi-
cient to estimate the 45 coefficients when a spherical harmonic order 8 is used,
when not using super-resolution as in [59]). We seed from the LGN and include
all fibers that reach the primary visual cortex. Both regions of interest are se-
lected manually on a T1-weighted image. We use probabilistic fiber tracking as
described in Section 2.3.

We demonstrate the effect of the enhancement of CSD and the use of the FBC
measure in Sections 3.3.1 and 3.3.2, respectively, in this relevant clinical setting.
A quantitative comparison of the four methods CSD (O), CSD + enhancement
(A), CSD + FBC (B) and CSD + enhancement + FBC (A+B) is provided in
Section 3.3.3. We show that the enhancement and/or the removal of spurious
fibers, but in particular the combination of both methods, allows for a more
stable computation of the ML-TP distance than the original tractography result.

3.3.1 Effect of the Enhancement of CSD on Tractography of the OR

In this section, we apply the PDE enhancement (step A) to the CSD FOD
as before, with parameter settings D33 = 1, D44 = 0.01 and t = 2. After
the enhancement we apply the sharpening deconvolution transform [18] and
probabilistic tractography with 10000 streamlines. We compare the results of
the tractography on the subjects both before and after the enhancement in Fig.
13. We see that the tracking on enhanced data generally shows less spurious
fibers, and has a better pronounced tip of the Meyer’s loop. However, the optic
radiation is a highly curved structure, where the advantage of the enhancement
of elongated structures cannot be fully exploited. To further reduce the spurious
fibers, we explore our other approach in the next section.

3.3.2 Effect of the FBC measure on Tractography of the OR

In this section, we apply probabilistic tractography on subject 1, with 20000
streamlines and including state of the art data scoring as in [23] (only relying
on the data term, i.e. λ = 0 in [23, Eq.(11)]), see Fig. 14.

The kernel parameters for the coherence quantification (step B) are set to
D33 = 1, D44 = 0.04 and t = 1.4 for the convolution [27]. Let Γ be the set of
the 1000 most anterior fibers in a tractography of the OR, that roughly form
the Meyer’s loop. We compute the LFBC and subsequently the RFBC for all
the fibers in Γ.

Then we take εmax(Γ) := max
γ∈Γ

RFBC(γ,Γ), the RFBC corresponding to the

“central” fiber, in the sense that it is most coherent with the fiber bundle. We
define the filtered set Γε as
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Γε := {γ ∈ Γ RFBC(γ,Γ) ≥ ε} , 0 ≤ ε ≤ εmax. (24)

This means the parameter ε acts as a threshold parameter and can be set such
that fibers with a high spuriousness are removed. The fiber point in Γε that
is closest to the temporal pole defines the ML-TP distance. We repeat the
probabilistic tractography five times with the same settings on the same data,
to qualitatively compare different stochastic realizations of the tractography
method. The original OR reconstructions are shown in the top row of Fig. 14.
We observe that due to the presence of spurious fibers, the tip of the Meyer’s
loop (indicated by the orange spheres) is estimated at different locations. When
we set the threshold ε = 0.1εmax, removing in these cases between 6% and 8%
of the most spurious fibers, we obtain the results as shown in the bottom row
of Fig. 14. It can be seen that the resulting fiber bundles are very similar to
each other, demonstrating less variation in the localization of the tip.

3.3.3 Quantitative Comparisons on Four Subjects

To support our claims of the two previous sections, we test the effect of our
methods on the stability of the ML-TP distance under different stochastic re-
alizations. Here we perform probabilistic tractography with 10000 fibers ten
times with the same settings, for each of the four subjects and each of the
four methods (CSD, CSD + enh, CSD + FBC and CSD + enh + FBC). The
FBC measure is computed from the 1000 most anterior fibers as in the previous
experiment and the threshold is set to ε = 0.05εmax. We compare the mean
ML-TP distance and sample standard deviation determined from the tracking
results of each of the methods. The results are summarized in the boxplots
in Fig. 15. The figure strongly supports the application of the enhancements
methods. For subjects 1-3 the ML-TP distance shows much less variation when
including the FBC. For all subjects also (CSD + enh) gives more stable results
than just CSD. Moreover, in all cases the combination (CSD + enh + FBC)
outperforms CSD and for all but subject 1 the combined method (CSD + enh
+ FBC) also gives better results than the enhancement or FBC individually.
It should be remarked that higher up the graph indicates a larger resection if
used for pre-surgical evaluation, which is not necessarily positive. However, we
prefer to have a stable and reproducible method that can be used with a safety
margin, then a method that is more conservative, but shows large variations.

4 Conclusions and Discussion

We have proposed two new tools to improve alignment of fibers in tractography
results: (A) the combination of CSD with contextual PDE enhancements and
(B) a fiber to bundle coherence measure to classify spurious fibers. Both ap-
proaches rely on the same contextual processing via PDEs on the space of cou-
pled positions and orientations. We validate our methodology with a variety of
experiments on synthetic and human data.

28



Figure 12: A reconstruction of the optic radiation and its positioning
in the brain. The left figure shows how the OR is positioned in the brain, the
close-up on the right shows how the OR wraps around the ventricular system.
The probabilistic tractography outputs many spurious fibers. The tip of the
Meyer’s loop, indicated by the orange sphere, is localized on a spurious fiber
and is therefore very dependent on the realization of the tractography. As a
result, the distance from the Meyer’s loop to the Temporal pole (ML-TP) that
is used in temporal lobe resection surgery, shows a high variation among different
tractography outcomes.

In the first experiment we consider a digital phantom [66] that simulates DW-
MRI data of a challenging configuration of multiple neural-like fiber bundles for
different noise levels, see Fig. 7. The combination of CSD with enhancements
and subsequent deterministic tracking was extensively tested for varying en-
hancement parameters, see Fig. 8. The enhanced FOD peaks were compared
with the ground truth fiber orientations, showing for all SNRs that the maxima
of the enhanced FOD coincide better with the ground truth peaks than without
application of enhancement. Also, this improvement is particularly high for very
low SNR values. To quantitatively evaluate the impact of the enhancement on
the tractographies we used the Tractometer evaluation system [52]. The results,
shown in Fig. 8 confirm the benefit, for all the metrics considered, of including
the enhancement. Also an improved stability of the metrics with respect to dif-
ferent enhancement parameters is observed. Furthermore, we found that data
with a lower SNR requires more regularization, obtained by choosing a higher
diffusion time t in the enhancement. These quantitative evaluations of local and
global metrics are supported by the qualitative results in Figs. 7 and 9, where
we saw that after enhancement fibers are better aligned and propagate better
through crossings.

The second experiment is performed on human data of a representative area
of the brain with crossing fiber bundles. We evaluate our combination of CSD
and enhancement for three different (single-shell) acquisition protocols, corre-
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Figure 13: Reconstructions of the optic radiation of four subjects
with and without use of enhancements. For all subjects, the left image
shows the result on the original data, the right image shows the result on the
enhanced FOD. The enhanced version generally gives less spurious fibers and
has a more pronounced tip of the Meyer’s loop.

sponding to different b-values and number of gradient directions. We observed,
see Fig. 10, that whereas tractography on CSD without enhancement showed
notable differences between the three acquisition protocols, tractography after
our enhancement lead to a qualitatively similar reconstruction in all cases. This
implies that the application of enhancement in the processing pipeline makes
the tractography results less dependent on the scanning protocol used.

We use the same dataset and the phantom dataset to compare our method
qualitatively and quantitatively with previous work [23, 27] in which sharpen-
ing methods and nonlinear enhancement PDEs are applied to DTI. We observed
qualitatively on real data in Fig. 11 and quantitatively in Table 1 the advantage
of CSD, that allows to use linear enhancements with less extreme regulariza-
tion parameters than with the DTI based method, resulting in a more reliable
tractography.
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Figure 14: The effect of filtering spurious fibers from a probabilistic
tractography on subject 1 in five different instances. Top row: five
different instances of the probabilistic tractography of the OR, viewed from
the top, selecting only the 1000 most anterior fibers. Bottom row: the result
after filtering the most spurious fibers for each of the instances. The red sphere
indicates the temporal pole, the white volumes represent the LGN and the
primary visual cortex. The orange spheres are the positions with minimal ML-
TP distance. The green sphere indicates the position of the tip averaged over
the five tractography results, before (top) or after filtering (bottom). There is
less variation in the position of the tip of the Meyer’s loop in the bottom row,
i.e. after filtering, than in the top row. The fiber bundle in the left upper corner
is the same as the one in Fig. 12.

For our second approach to improve fiber alignment, we introduced a fiber to
bundle coherence measure that can be used for detecting and filtering spurious
fibers. The fiber to bundle coherence (FBC) is computed from a tractography
based density that we constructed using the same PDE foundation as in the
first method. As an application we considered the reconstruction of the optic
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Figure 15: Boxplots of the ML-TP distances. For the four subjects, we
show the mean of the ML-TP distance over ten tractography results, plus two
standard deviations. The four different methods are indicated with different
colors. The combination CSD + enh + FBC is the most robust in producing
stable results.

radiation, a fiber bundle of which the position of the anterior extent (the Meyer’s
loop) is of interest for temporal lobe resection surgery. Accurate and stable
localization of the tip of the Meyer’s loop is difficult due to the presence of
spurious fibers, as shown in Fig. 12. We demonstrated in Figs. 13, 14 and 15
that either by enhancement of the CSD FOD, or by removing the most spurious
fibers using the FBC measure leads to a robust probabilistic tractography. In
particular, the combination of both methods in one pipeline allows for a more
stable localization of the tip of the Meyer’s loop and a more stable determination
of the Meyer’s loop to Temporal Pole distance.

Our experiments show that our PDE enhancement methods for contextual
processing are an effective and widely applicable tool to both enhance CSD
data and to remove spurious fibers from tractographies. While we used CSD to
construct an FOD, the PDE enhancement can be applied to an FOD obtained
with any other method. We have seen that both our methods improve fiber
alignment in tractography results and hence provide information on structural
connectivity of the brain white matter more robustly. In the future, we aim to
improve this framework by using data-adaptive smoothing, for example using
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local gauge frames [78].
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65. Hörmander L (1967) Hypoelliptic second order differential equations.
Acta Mathematica 119: 147-171.

66. Daducci A, Caruyer E, Descoteaux M, Thiran JP (2013). HARDI re-
construction challenge. IEEE International Symposium on Biomedical
Imaging. http://hardi.epfl.ch/statis/events/2013_ISBI/.

67. Wolfram Research Inc (2014) Mathematica. Wolfram Research Inc., 10.0
edition.

68. Chamberland M, Whittingstall K, Fortin D, Mathieu D, Descoteaux M
(2014) Real-time multi-peak tractography for instantaneous connectivity
display. Frontiers in neuroinformatics 8.

69. Caruyer E, Daducci A, Descoteaux M, Houde JC, Thiran JP, et al. (2014)
Phantomas: a flexible software library to simulate diffusion MR phan-
toms. International Society for Magnetic Resonance in Medicine .

38

http://repository.tue.nl/789374
http://repository.tue.nl/789374
http://hardi.epfl.ch/statis/events/2013_ISBI/


70. Close TG, Tournier JD, Calamante F, Johnston LA, Mareels I, et al.
(2009) A software tool to generate simulated white matter structures for
the assessment of fibre-tracking algorithms. NeuroImage 47: 1288 - 1300.

71. Assaf Y, Basser PJ (2005) Composite hindered and restricted model of
diffusion (CHARMED) MR imaging of the human brain. NeuroImage 27:
48–58.
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