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Abstract Locally adaptive differential frames (gauge
frames) are a well-known effective tool in image analy-
sis, used in differential invariants and PDE-flows. However,
at complex structures such as crossings or junctions, these
frames are not well defined. Therefore, we generalize the
notion of gauge frames on images to gauge frames on data
representations U : R

d
� Sd−1 → R defined on the

extended space of positions and orientations, whichwe relate
to data on the roto-translation group SE(d), d = 2, 3.
This allows to define multiple frames per position, one
per orientation. We compute these frames via exponential
curve fits in the extended data representations in SE(d).
These curve fits minimize first- or second-order variational
problems which are solved by spectral decomposition of,
respectively, a structure tensor or Hessian of data on SE(d).
We include these gauge frames in differential invariants and
crossing-preserving PDE-flows acting on extended data rep-
resentation U and we show their advantage compared to the
standard left-invariant frame on SE(d). Applications include
crossing-preserving filtering and improved segmentations of
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the vascular tree in retinal images, and new 3D extensions
of coherence-enhancing diffusion via invertible orientation
scores.

Keywords Roto-translation group · Gauge frames ·
Exponential curves · Non-linear diffusion · Left-invariant
image processing · Orientation scores

1 Introduction

Many existing image analysis techniques rely on differential
frames that are locally adapted to image data. This includes
methods based on differential invariants [33,39,50,60], par-
tial differential equations [38,60,71], and non-linear and
morphological scale spaces [12,13,72], used in various
image processing tasks such as tracking and line detection
[6], corner detection and edge focussing [8,39], segmentation
[66], active contours [15,16], DTI data processing [45,46],
feature-based clustering, etc. These local coordinate frames
(also known as ‘gauge frames’ according to [10,33,39]) pro-
vide differential frames directly adapted to the local image
structure via a structure tensor or a Hessian of the image.
Typically the structure tensor (based on first-order Gaussian
derivatives) is used for adapting to edge-like structures, while
the Hessian (based on second-order Gaussian derivatives) is
used for adapting to line-like structures. The primary benefit
of the gauge frames is that they allow to include adapta-
tion for anisotropy and curvature in a rotation and translation
invariant way. See Fig. 1, where we have depicted local adap-
tive frames based on eigenvector decomposition of the image
Hessian at some given scale, of the MR image in the back-
ground.

It is sometimes problematic that such locally adapted dif-
ferential frames are directly placed in the image domain R

d
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(d = 2, 3), as at the vicinity of complex structures, e.g.,
crossings, textures, bifurcations, one typically requires mul-
tiple local spatial coordinate frames. To this end, one effective
alternative is to extend the image domain to the joint space
of positions and orientations R

d
� Sd−1. The advantage is

that it allows to disentangle oriented structures involved in
crossings, and to include curvature, cf. Fig. 2. Such extended
domain techniques rely on various kinds of lifting, such as
coherent state transforms (also known as invertible orien-
tation scores) [2,6,27,34], continuous wavelet transforms
[6,23,27,63], orientation lifts [11,73], or orientation chan-
nel representations [32]. In case one has to deal with more
complex diffusion-weighted MRI techniques, the data in

extended position orientation domain can be obtained after
a modeling procedure as in [1,65,67,68]. In this article we
will not discuss in detail on how such a new image repre-
sentation or lift U : R

d
� Sd−1 → R is to be constructed

from gray-scale image f : R
d → R, and we assume it to

be a sufficiently smooth given input. Here U (x,n) is to be
considered as a probability density of finding a local oriented
structure (i.e., an elongated structure) at position x ∈ R

d with
orientation n ∈ Sd−1.

When processing data in the extended position orien-
tation domain, it is often necessary to equip the domain
with a structure that links the data across different orien-
tation channels, in such a way that a notion of alignment

Fig. 1 Left locally adaptive
frames (gauge frames) in the
image domain computed as the
eigenvectors of the Hessian of
the image at each location. Right
such gauge frames can be used
for adaptive anisotropic
diffusion and geometric
reasoning. However, at complex
structures such as
blob-structures/crossings, the
gauge frames are ill defined
causing fluctuations

Fig. 2 We aim for adaptive
anisotropic diffusion of images
which takes into account
curvature. At areas with low
orientation confidence (in blue)
isotropic diffusion is required,
whereas at areas with high
orientation confidence (in red)
anisotropic diffusion with
curvature adaptation is required.
Application of locally adaptive
frames in the image domain
suffers from interference (3rd
column), whereas application of
locally adaptive frames in the
domain R

d
� Sd−1 allows for

adaptation along all the
elongated structures (4th
column) (Color figure online)
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between local orientations is taken into account. This is
achieved by relating data on positions and orientations to
data on the roto-translation group SE(d) = R

d
� SO(d).

This idea resulted in contextual image analysis methods
[4,17,20,26,27,30,53,63,64,70,73] and appears in models
of low-level visual perception and their relation with the
functional architecture of the visual cortex [5,11,19,49,57–
59]. Following the conventions in [30], we denote functions
on the coupled space of positions and orientations by U :
R
d

� Sd−1 → R. Then, its extension Ũ : SE(d) → R is
given by

Ũ (x,R) := U (x,Ra) (1)

for all x ∈ R
d and all rotations R ∈ SO(d), and given

reference axis a ∈ Sd−1. Throughout this article a is chosen
as follows:

d = 2 ⇒ a = (1, 0)T , d = 3 ⇒ a = (0, 0, 1)T . (2)

Then, we can identify the joint space of positions and orien-
tations R

d
� Sd−1 by

R
d

� Sd−1 := SE(d)/({0} × SO(d − 1)), (3)

where this quotient structure is due to (1), and where
SO(d − 1) is identified with all rotations onR

d that map ref-
erence axis a onto itself. Note that in Eq. (1) the tilde indicates
we consider data on the group instead of data on the quotient.
If d = 2, the tildes can be ignored asR

2
�S1 = SE(2). How-

ever, for d ≥ 3 this distinction is crucial and necessary details
on (3) will follow in the beginning of Sect. 6.

In this article, our quest is to find locally optimal differ-
ential frames in SE(d) relying on similar Hessian- and/or
structure-tensor type of techniques for gauge frames on
images, recall Fig. 1. Then, the frames can be used to con-
struct crossing-preservingdifferential invariants and adaptive
diffusions of data in SE(d). In order to find these optimal
frames, our main tool is the theory of curve fits. Early works
on curve fits have been presented [37,54] where the notion
of curvature consistency is applied to inferring local curve
orientations, based on neighborhood co-circularity continu-
ation criteria. This approach was extended to 2D texture flow
inference in [7], by lifting images in position and orientation
domain and inferring multiple Cartan frames at each point.
Our work is embedded in a Lie group framework where we
consider the notion of exponential curve fits via formal vari-
ational methods. Exponential curves in the SE(d)-curved
geometry are the equivalents of straight1 lines in the Euclid-
ean geometry. If d = 2, the spatial projection of these

1 Exponential curves are auto-parallels w.r.t. ‘-’Cartan connection, see
Appendix 1, Eq. (132).

exponential curves are osculating circles, which are used
for constructing the curvature consistency in [54], for defin-
ing the tensor voting fields in [52], and for local modeling
association fields in [19]. If d = 3, the spatial projection of
exponential curves are spirals with constant curvature and
torsion. Based on co-helicity principles, similar spirals have
been used in neuroimaging applications [61] or for modeling
heart fibers [62]. In these works curve fits are obtained via
efficient discrete optimization techniques, which are beyond
the scope of this article.

In Fig. 3, we present an example for d = 2 of the overall
pipeline of including locally adaptive frames in a suitable
diffusion operators Φ acting in the lifted domain R

2
� S1.

For d > 2 the same pipeline applies. Here, an exponential
curve fit γ c∗

g (t) (in blue, with spatial projection in red) at a
group element g ∈ SE(d) is characterized by (g, c∗(g)), i.e.,
a starting point g and an tangent vector c∗(g) that should be
aligned with the structures of interest. In essence, this paper
explains in detail how to compute c∗(g) as this will be the
principal direction the differential framewill be alignedwith,
and thengives appropriate conditions for fixing the remaining
directions in the frame.

The main contribution of this article is to provide a
general theory for finding locally adaptive frames in the
roto-translation group SE(d), for d = 2, 3. Some prelim-
inary work on exponential curve fits of the second order on
SE(2) has been presented in [34,35,63]. In this paper we
formalize these previous methods (Theorems 2 and 3) and
we extend them to first-order exponential curve fits (Theo-
rem 1). Furthermore, we generalize both approaches to the
case d = 3 (Theorems 4, 5, 6, 7, and 8). All theorems
contain new results except for Theorems 2 and 3. The key
ingredient is to consider the fits as formal variational curve
optimization problems with exact solutions derived by spec-
tral decomposition of structure tensors and Hessians of the
data Ũ on SE(d). In the SE(3)-case we show that in order
to obtain torsion-free exponential curve fits with well-posed
projection on R

3
� S2, one must resign to a twofold opti-

mization algorithm. To show the potential of considering
these locally adaptive frames, we employ them in medical
image analysis applications, in improved differential invari-
ants and improved crossing-preserving diffusions. Here, we
provide for the first time coherence-enhancing diffusions via
3D invertible orientation scores [42,43], extending previous
methods [34,35,63] to the 3D Euclidean motion group.

1.1 Structure of the Article

We start the body of this article reviewing preliminary differ-
ential geometry tools in Sect. 2. Then, in Sect. 3 we describe
how a given exponential curve fit induces the locally adaptive
frame. In Sect. 4 we provide an introduction by reformu-
lating the standard gauge frames construction in images in
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Fig. 3 The overall pipeline of image processing f �→ Υ f via left-
invariant operators Φ. In this pipeline we construct an invertible
orientation score Wψ f (Sect. 7.1), we fit an exponential curve (Sect.
5,6), we obtain the gauge frame (Sect. 3 andAppendix 1), we construct a
non-linear diffusion, andfinallywe apply reconstruction (Sect. 7.1). The
main focus of this paper is curve fitting, where we compute per element

g = (x, y, θ) an exponential curve fit γ c∗
g (t) (in blue, with spatial pro-

jection in red) with tangent γ̇ c∗
g (0) = c∗(g) = (c1, c2, c3)T at g. Based

on this fit we construct for each g, a local frame {B1|g , B2|g , B3|g}
which are used in our operators Φ on the lift (here Φ is a non-linear
diffusion operator) (Color figure online)

a group-theoretical setting. This gives a roadmap towards
SE(2)-extensions explained in Sect. 5, where we deal with
exponential curve fits of the first order in Sect. 5.2 computed
via a structure tensor, and exponential curves fits of second
order in Sect. 5.3 computed via the Hessian of the data Ũ . In
the latter case we have two options for the curve optimiza-
tion problem: one solved by the symmetric sum, and one by
the symmetric product of the non-symmetric Hessian. The
curve fits in SE(2) in Sect. 5 are extended to curve fits in
SE(3) in Sect. 6. It starts with preliminaries on the quotient
(3) and then it follows the same structure as the previous sec-
tion. Here we present the twofold algorithm for computing
the torsion-free exponential curve fits.

In Sect. 7 we consider experiments regarding med-
ical imaging applications and feasibility studies. We first
recall the theory of invertible orientation scores needed for
the applications. In the SE(2)-case we present crossing-
preserving multi-scale vessel enhancing filters in retinal
imaging, and in the SE(3)-case we include a proof of
concept of crossing-preserving (coherence-enhancing diffu-
sion) steered by gauge frames via invertible 3D orientation
scores.

Finally, there are 5 appendices. Appendix 1 supplements
Sect. 3 by explaining the construction of the frame for
d = 2, 3. Appendix 2 describes the geometry of neighbor-

ing exponential curves needed for formulating the variational
problems. Appendix 3 complements the twofold approach in
Sect. 6. Appendix 4 provides the definition of the Hessian
used in the paper. Finally, Table 1 in Appendix 5 contains a
list of symbols, their explanations and references to the equa-
tion in which they are defined. We advise the reader to keep
track of this table. Especially, in the more technical sections:
Sects. 5 and 6.

2 Differential Geometrical Tools

Relating our data to data on the Euclidean motion group, via
Eq. (1), allows us to use tools from Lie group theory and
differential geometry. In this section we explain these tools
that are important for our notion of an exponential curve
fit to smooth data Ũ : SE(d) → R. Often, we consider
the case d = 2 for basic illustration. Later on, in Sect. 6,
we consider the case d = 3 and extra technicalities on the
quotient structure will enter.

2.1 The Roto-Translation Group

The data Ũ : SE(d) → R is defined on the group SE(d) of
rotations and translations acting onR

d . As the concatenation
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of two rigid body motions is again a rigid body motion, the
group SE(d) is equipped with the following group product:

gg′ = (x,R)(x′,R′) = (Rx′ + x,RR′),
with g = (x,R), g′ = (x′,R′) ∈ SE(d), (4)

where we recognize the semi-direct product structure SE(d)

= R
d

� SO(d), of the translation group R
d with rotation

group SO(d) = {R ∈ R
d×d |RT = R−1, detR = 1}. The

groups SE(d) and SO(d) have dimension

rd := dim(SO(d)) = (d − 1)d

2
,

nd := dim(SE(d)) = d(d + 1)

2
= d + rd . (5)

Note that n2 = 3, n3 = 6. One may represent elements g
from SE(d) by the following matrix representation

g ≡ M(g) =
(

R x
0T 1

)
, which indeed satisfies

M(g g′) = M(g) M(g′). (6)

We will often avoid this embedding into the set of invertible
(d +1)× (d +1)matrices, in order to focus on the geometry
rather than the algebra.

2.2 Left-Invariant Operators

In image analysis applications operators Ũ �→ Φ̃(Ũ ) need
to be left-invariant and not right-invariant [24,34]. Left-
invariant operators Φ̃ in the extended domain correspond
to rotation and translation invariant operators Υ in the image
domain, which is a desirable property. On the other hand,
right-invariance boils down to isotropic operators in the
image domain which is an undesirable restriction. By defini-
tion Φ̃ is left-invariant and not right-invariant if it commutes
with the left-regular representationL (and not with the right-
regular representation R). Representations L,R are given
by

(LhŨ )(g) = Ũ (h−1g), (RhŨ )(g) = Ũ (gh), (7)

for all h, g ∈ SE(d). So operator Φ̃ must satisfy Φ̃ ◦ Lg =
Lg ◦ Φ̃ and Φ̃ ◦ Rg �= Rg ◦ Φ̃ for all g ∈ SE(d).

2.3 Left-Invariant Vector Fields and Dual Frame

A special case of left-invariant operators are left-invariant
derivatives. More precisely (see Remark 1 below), we need
to consider left-invariant vector fields g �→ Ag , as the left-
invariant derivativeAg depends on the location g where it is
attached. Intuitively, the left-invariant vector fields {Ai }nii=1

provide a local moving frame of reference in the tangent
bundle T (SE(d)), which comes in naturally when including
alignment of local orientations in the image processing of Ũ .

Formally, the left-invariant vector fields are obtained by
taking a basis {Ai }ndi=1 ∈ Te(SE(d)) in the tangent space at
the unity element e := (0, I ), and then one uses the push-
forward (Lg)∗ of the left multiplication

Lgh = gh, (8)

to obtain the corresponding tangent vectors in the tangent
space Tg(SE(d)). Thus, one associates to each Ai a left-
invariant field Ai given by

Ai |g = (Lg)∗Ai , for all g ∈ SE(d), i = 1, . . . , nd , (9)

where we consider each Ai as a differential operator on
smooth locally defined functions φ̃ given by

Ai |g φ̃ = (Lg)∗Ai φ̃ := Ai (φ̃ ◦ Lg).

An explicit way to construct and compute the differential
operators Ai |g from Ai = Ai |e is via

Ai |g φ̃ = Ai φ̃(g) = lim
ε→0

φ̃(g eεAi ) − φ̃(g)

ε
, (10)

where A �→ eA = ∑∞
k=0

Ak

k! denotes the matrix exponen-
tial from Lie algebra Te(SE(d)) to Lie group SE(d). The
differential operators {Ai }ndi=1 induce a corresponding dual
frame {ωi }ndi=1, which is a basis for the co-tangent bundle
T ∗(SE(d)). This dual frame is given by

〈ωi ,A j 〉 = δij for i, j = 1, . . . nd , (11)

where δij denotes the Kronecker delta. Then the derivative

of a differentiable function φ̃ : SE(d) → R is expressed as
follows:

dφ̃ =
nd∑
i=1

Ai φ̃ ωi ∈ T ∗(SE(d)). (12)

Remark 1 In differential geometry, there exist twoequivalent
viewpoints [3, Ch. 2] on tangent vectors Ag ∈ Tg(SE(d)):
either one considers them as tangents to locally defined
curves; or one considers them as differential operators on
locally defined functions. The connection between these
viewpoints is as follows. We identify a tangent vector ˙̃γ (t) ∈
Tγ̃ (t)(SE(d)) with the differential operator ( ˙̃γ (t))(φ̃) :=
d
dt φ̃(γ̃ (t)) for all locally defined, differentiable, real-valued
functions φ̃.
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Next we express tangent vectors explicitly in the left-
invariant moving frame of reference, by taking a directional
derivative:

d

dt
φ̃(γ̃ (t)) = 〈dφ̃(γ̃ (t)), ˙̃γ (t)〉 =

nd∑
i=1

˙̃γ i (t) Ai |γ̃ (t) φ̃

(13)

with ˙̃γ (t) =
nd∑
i=1

˙̃γ i (t) Ai |γ̃ (t), and with φ̃ smooth and

defined on an open set around γ̃ (t). Eq. (13) will play a
crucial role in Sect. 5 (exponential curve fits for d = 2) and
Sect. 6 (exponential curve fits for d = 3).

Example 1 For d = 2 we take A1 = ∂x |e, A2 = ∂y
∣∣
e,

A3 = ∂θ |e. Then we have the left-invariant vector fields

A1|(x,y,θ) := cos θ
∂

∂x

∣∣∣∣
(x,y,θ)

+ sin θ
∂

∂y

∣∣∣∣
(x,y,θ)

,

A2|(x,y,θ) := − sin θ
∂

∂x

∣∣∣∣
(x,y,θ)

+ cos θ
∂

∂y

∣∣∣∣
(x,y,θ)

,

A3|(x,y,θ) := ∂

∂θ

∣∣∣∣
(x,y,θ)

. (14)

The dual frame is given by

ω1 = cos θdx + sin θdy,

ω2 = − sin θdx + cos θdy,

ω3 = dθ. (15)

For explicit formulas for left-invariant vector fields in SE(3)
see [18,30].

2.4 Exponential Curves in SE(d)

Let (c(1), c(2))T ∈ R
d+rd = R

nd be a given column vector,
where c(1) = (c1, . . . , cd) ∈ R

d denotes the spatial part and
c(2) = (cd+1, . . . , cnd ) ∈ R

rd denotes the rotational part.
The unique exponential curve passing through g ∈ SE(d)

with initial velocity c(g) = ∑nd
i=1 c

i Ai |g equals

γ̃ c
g (t) = g e

t
nd∑
i=1

ci Ai
(16)

with Ai = Ai |e denoting a basis of Te(SE(d)). In fact such
exponential curves satisfy

˙̃γ (t) =
nd∑
i=1

ci Ai |γ̃ (t) (17)

and thereby have constant velocity in the moving frame of
reference, i.e., ˙̃γ i = ci in Eq. (13). A way to compute the
exponentials is via matrix exponentials and (6).

Example 2 If d = 2 we have exponential curves:

γ̃ c
g0(t) = g0 e

t (c1A1+c2A2+c3A3) = (x(t), y(t), θ(t)), (18)

which are circular spirals with

x(t) = x0 + c1

c3
(
sin(c3t + θ0) − sin(θ0)

)

+ c2

c3
(
cos(c3t + θ0) − cos(θ0)

)
,

y(t) = y0 − c1

c3
(
cos(c3t + θ0) − cos(θ0)

)

+ c2

c3
(
sin(c3t + θ0) − sin(θ0)

)
,

θ(t) = θ0 + tc3, (19)

for the case c3 �= 0, and all t ≥ 0 and straight lines with

x(t) = x0 + t
(
c1 cos θ0 − c2 sin θ0

)
,

y(t) = y0 + t
(
c1 sin θ0 + c2 cos θ0

)
,

θ(t) = θ0, (20)

for the case c3 = 0, where g0 = (x0, y0, θ0) ∈ SE(2). See
the left panel in Fig. 4.

Example 3 For d = 3, the formulae for exponential curves
in SE(3) are given in for example [18,30]. Their spatial part

are circular spirals with torsion τ (t) = |c(1)·c(2)|
‖c(1)‖ κ(t) and

curvature

κ(t) = 1

‖c(1)‖2
(
cos(t‖c(2)‖) c(2) × c(1)

+ sin(t‖c(2)‖)
‖c(2)‖ c(2) × c(2) × c(1)

)
. (21)

Note that their magnitudes are constant:

|κ| = ‖c(1) × c(2)‖
‖c(1)‖2 and |τ | = |c(1) · c(2)| · |κ|

‖c(1)‖ . (22)

2.5 Left-Invariant Metric Tensor on SE(d)

We use the following (left-invariant) metric tensor:

Gμ

∣∣
γ̃

( ˙̃γ, ˙̃γ ) = μ2
d∑

i=1

| ˙̃γ i |2 +
nd∑

i=d+1

| ˙̃γ i |2, (23)
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Fig. 4 Left horizontal
exponential curve γ̃ c

g in SE(2)
with c = (1, 0, 1). Its projection
on the ground plane reflects
co-circularity, and the curve can
be obtained by a lift (30) from
its spatial projection. Right the
distribution � of horizontal
tangent vector fields as a
sub-bundle in the tangent bundle
T (SE(2))

where ˙̃γ = ∑nd
i=1

˙̃γ i Ai |γ̃ , and with stiffness parameter μ

along any smooth curve γ̃ in SE(d). Now, for the special
case of exponential curves, one has ˙̃γ i = ci is constant. The
metric allows us to normalize the speed along the curves by
imposing a normalization constraint

‖c‖2μ := ‖Mμc‖2

= μ2
d∑

i=1

|ci |2 +
nd∑

i=d+1

|ci |2

= μ2‖c(1)‖2 + ‖c(2)‖2 = 1,

withMμ :=
(

μId 0
0 Ird

)
∈ R

nd×nd . (24)

We will use this constraint in the fitting procedure in order
to ensure that our exponential curves (17) are parameterized
by Riemannian arclength t .

2.6 Convolution and Haar Measure on SE(d)

In general a convolution of data Ũ : SE(d) → Rwith kernel
K̃ : SE(d) → R is given by

(K̃ ∗ Ũ )(g) =
∫

SE(d)

K̃ (h−1g) Ũ (h) dμ(h)

=
∫

Rd

∫
SO(d)

K̃ ((R′)−1(x − x′), (R′)−1R)dx′dμSO(d)(R′),

with dμ(h) = dx′dμSO(d)(R′), (25)

for all h = (x′,R′) ∈ SE(d), where Haar measure μ is the
direct product of the usual Lebesgue measure on R

d with the
Haar measure on SO(d).

2.7 Gaussian Smoothing and Gradient on SE(d)

We define the regularized data

Ṽ := G̃s ∗ Ũ , (26)

where s = (sp, so) are the spatial and angular scales, respec-
tively, of the separable Gaussian smoothing kernel defined
by

G̃s(x,R) := GR
d

sp (x) GSd−1

so (Ra). (27)

This smoothing kernel is a product of the heat kernel

GR
d

sp (x) = e
− ‖x‖2

4sp

(4πsp)d/2 on R
d centered at 0 with spatial scale

sp > 0, and a heat kernel GSd−1

so (Ra) on Sd−1 centered
around a ∈ Sd−1 with angular scale so > 0.

By definition the gradient ∇Ũ of image data Ũ :
SE(d) → R is the Riesz representation vector of the deriv-
ative dŨ :

∇Ũ := G−1
μ dŨ =

d∑
i=1

μ−2Ai Ũ Ai +
nd∑

j=d+1

A jU A j

≡ Mμ−2(A1Ũ , . . . ,And Ũ )T , (28)

relying on Mμ as defined in (24). Here, following standard
conventions in differential geometry,G−1

μ denotes the inverse
of the linear map associated to the metric tensor (23). Then,
the Gaussian gradient is defined by

∇sŨ := ∇ Ṽ = ∇(G̃s ∗ Ũ ) = ∇G̃s ∗ Ũ . (29)

2.8 Horizontal Exponential Curves in SE(d)

Typically, in the distribution Ũ (e.g., if Ũ is an orientation
score of a gray-scale image) the mass is concentrated around
so-called horizontal exponential curves in SE(d) (see Fig. 3).
Next we explain this notion of horizontal exponential curves.

123



374 J Math Imaging Vis (2016) 56:367–402

A curve t �→ (x(t), y(t)) ∈ R
2 can be lifted to a curve

t �→ γ̃ (t) = (x(t), y(t), θ(t)) in SE(2) via

θ(t) = arg{ẋ(t) + i ẏ(t)}. (30)

Generalizing to d ≥ 2, one can lift a curve t �→ x(t) ∈ R
d

towards a curve t �→ γ (t) = (x(t),n(t)) in R
d

� Sd−1 by
setting

n(t) = ‖ẋ(t)‖−1ẋ(t).

A curve t �→ x(t) can be lifted towards a family of lifted
curves t �→ γ̃ (t) = (x(t),Rn(t)) into the roto-translation
group SE(d) by setting Rn(t) ∈ SO(d) such that it maps
reference axis a onto n(t):

Rn(t)a = n(t) = ‖ẋ(t)‖−1ẋ(t). (31)

Here we use Rn to denote any rotation that maps reference
axis a onto n. Clearly, the choice of rotation is not unique for
d > 2, e.g., if d = 3 then RnRa,αa = a regardless the value
of α, where Ra,α denotes the counterclockwise 3D rotation
about axis a by angle α.

Next we study the implication of restriction (31) on the
tangent bundle of SE(d).

– For d = 2, we have restriction ẋ(t) = (ẋ(t), ẏ(t)) =
‖ẋ(t)‖(cos θ(t), sin θ(t)), i.e.,

˙̃γ ∈ �|γ̃ , with � = span{cos θ∂x + sin θ∂y, ∂θ }
= span{A1,A3}, (32)

where � denotes the so-called horizontal part of tangent
bundle T (SE(2)). See Fig. 4.

– For d = 3, we impose the constraint:

˙̃γ (t) ∈ Δγ̃ (t), with Δ := span{A3,A4,A5}, (33)

whereA3 = n·∇R3 , since then spatial transport is always
along n which is required for for (31).

Curves γ̃ (t) satisfying the constraint (32) for d = 2, and (33)
for d = 3 are called horizontal curves. Note that dim(Δ) =
d.

Next we study how the restriction applies to the particular
case of exponential curves on SE(d).

– For d = 2 horizontal exponential curves are obtained
from (18), (19), (20) by setting c2 = 0.

– For d = 3, we use a different reference axis a, and
horizontal exponential curves are obtained from (16) by
setting c1 = c2 = c6 = 0.

If exponential curves are not horizontal, thenwe indicate how
much the local tangent of the exponential curve points outside
the spatial part of�, by a ‘deviation fromhorizontality angle’
χ , which is given by

χ = arccos

(∣∣∣∣∣
c(1) · a
‖c(1)‖

∣∣∣∣∣
)

. (34)

Example 4 In case d = 2 we have n2 = 3, a = (1, 0)T .
The horizontal part of the tangent bundle � is given by (32),
and horizontal exponential curves are obtained from (18) by
setting c2 = 0. For exponential curves in general, we have
deviation from horizontality angle

χ = arccos

(∣∣∣∣∣
c1√|c1|2 + |c2|2

∣∣∣∣∣
)

. (35)

An exponential curve in SE(2) is horizontal if and only if
χ = 0. See Fig. 4, where in the left we have depicted a
horizontal exponential curve and where in the right we have
visualized distribution �.

Example 5 In case d = 3, we have n3 = 6, a = (0, 0, 1)T .
The horizontal part of the tangent bundle is given by (33), and
horizontal exponential curves are characterized by c3, c4, c5

whereas c1 = c2 = c6 = 0. By Eq. (22) these curves have

zero torsion |τ | = 0 and constant curvature
√

(c4)2+(c5)2

c3
and

thus they are planar circles. For exponential curves in general,
we have deviation from horizontality angle

χ = arccos

(∣∣∣∣∣
c3√|c1|2 + |c2|2 + |c3|2

∣∣∣∣∣
)

.

An exponential curve in SE(3) is horizontal if and only if
χ = 0 and c6 = 0.

3 From Exponential Curve Fits to Gauge Frames
on SE(d)

In Sects. 5 and 6 we will discuss techniques to find an expo-
nential curve γ̃ c

g (t) that fits the data Ũ : SE(d) → R locally.
Let c(g) = (γ̃ c

g )′(0) be its tangent vector at g.
In this section we assume that the tangent vector c(g) =

(c(1)(g), c(2)(g))T ∈ Rd+rd = R
nd is given. From this vector

wewill construct a locally adaptive frame {B1|g , . . . , Bnd

∣∣
g},

orthonormal w.r.t. Gμ-metric in such a way that

1. the main spatial generator (A1 for d = 2 and Ad for
d > 2) is mapped onto B1|g = ∑nd

i=1 c
i (g) Ai |g ,

2. the spatial generators {Bi |g}di=2 are obtained from the
other left-invariant spatial generators {Ai |g}di=1 by a pla-

nar rotation of a onto c(1)

‖c(1)‖ by angle χ . In particular, if
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χ = 0, the other spatial generators do not change their
direction. This allows us to still distinguish spatial gen-
erators and angular generators in our adapted frame.

Next we provide for each g ∈ SE(d) the explicit con-
struction of a rotation matrix Rc(g) and a scaling by Mμ−1

on Tg(SE(d)), which maps frame {A1|g , . . . , And

∣∣
g} onto

{B1|g , . . . , Bnd

∣∣
g}.

The construction for d > 2 is technical and provided in
Theorem A in Appendix 1. However, the whole construction
of the rotation matrix Rc via a concatenation of two sub-
sequent rotations is similar to the case d = 2 that we will
explain next.

Consider d = 2 where the frames {A1,A2,A3} and
{B1,B2,B3} are depicted in Fig. 5 The explicit relation
between the normalized gauge frame and the left-invariant
vector field frame is given by

B := (Rc)TM−1
μ A, (36)

with A := (A1,A2,A3)
T , B := (B1,B2,B3)

T , and with
rotation matrix

Rc = R2R1 ∈ SO(3), with

R1 =
⎛
⎝ cosχ − sin χ 0

sin χ cosχ 0
0 0 1

⎞
⎠ , R2 =

⎛
⎝ cos ν 0 sin ν

0 1 0
− sin ν 0 cos ν

⎞
⎠ ,

(37)

Fig. 5 Locally adaptive frame {B1|g , B2|g , B3|g} (in blue) in
Tg(SE(2)) (with g placed at the origin) is obtained from frame
{A1|g , A2|g , A3|g} (in red) and c(g), via normalization and two sub-
sequent rotations Rc = R2R1, see Eq. (36), revealing deviation from
horizontality χ , and spherical angle ν in Eq. (37). Vector fieldA1 takes
a spatial derivative in direction n, whereas B1 takes a derivative along
the tangent c of the local exponential curve fit (Color figure online)

where the rotation angles are the deviation from horizontality
angle χ and the spherical angle

ν = arcsin

(
c3

‖c‖μ

)
∈ [−π/2, π/2].

Recall that χ is given by (35). The multiplication M−1
μ A

ensures that each of the vector fields in the locally adaptive
frame is normalized w.r.t. the Gμ-metric, recall (23).

Remark 2 When imposing isotropy (w.r.t. the metricGμ) in
the plane orthogonal to B1, there is a unique choice Rc map-
ping (1, 0, 0)T onto (μc1, μc2, c3)T such that it keeps the
other spatial generator in the spatial subspace of Tg(SE(2))
(and with χ = 0 ⇔ B2 = μ−1A2). This choice is given by
(37).

The generalization to the d-dimensional case of the construc-
tion of a locally adaptive frame {Bi }ndi=1 from {Ai }ndi=1 and the
tangent vector c of a given exponential curve fit γ̃ c

g (·) to data
Ũ : SE(d) → R is explained in Theorem 7 in Appendix 1.

4 Exponential Curve Fits in R
d

In this section we reformulate the classical construction of
a locally adaptive frame to image f at location x ∈ R

d , in
a group-theoretical way. This reformulation seems technical
at first sight, but helps in understanding the formulation of
projected exponential curve fits in the higher dimensional Lie
group SE(d).

4.1 Exponential Curve Fits in R
d of the First Order

Wewill take the structure tensor approach [9,48], which will
be shown to yield first-order exponential curve fits.

The Gaussian gradient

∇s f = ∇Gs ∗ f, (38)

with Gaussian kernel

Gs(x) = (4πs)−d/2e− ‖x‖2
4s , (39)

is used in the definition of the structure matrix:

Ss,ρ( f ) := Gρ ∗ ∇s f (∇s f )T , (40)

with s = 1
2σ

2
s , and ρ = 1

2σ
2
ρ the scale of regularization typi-

cally yielding a non-degenerate and positive definite matrix.
In the remainder we use short notation Ss,ρ := Ss,ρ( f ). The
structure matrix appears in solving the following optimiza-
tion problem where for all x ∈ R

d we aim to find optimal
tangent vector

123



376 J Math Imaging Vis (2016) 56:367–402

c∗(x) = arg min
c∈R

d ,
‖c‖=1

∫

Rd

Gρ(x − x′)|∇s f (x′) · c|2dx′

= arg min
c∈R

d ,
‖c‖=1

cTSs,ρ(x)c. (41)

In this optimization problem we find the tangent c∗(x)which
minimizes a (Gaussian) weighted average of the squared
directional derivative |∇s f (x′) · c|2 in the neighborhood of
x. The second identity in (41), which directly follows from
the definition of the structure matrix, allows us to solve opti-
mization problem (41) via the Euler–Lagrange equation

Ss,ρ(x) c∗(x) = λ1c∗(x), (42)

since the minimizer is found as the eigenvector c∗(x) with
the smallest eigenvalue λ1.

Now let us put Eq. (41) in group-theoretical form by refor-
mulating it as an exponential curve fitting problem. This is
helpful in our subsequent generalizations to SE(d). On R

d

exponential curves are straight lines:

γ c
x (t) = x + expRd (tc) = x + tc, (43)

and on T (Rd) we impose the standard flat metric tensor
G(c,d) = ∑d

i=1 c
i di . In (41) we replace the directional

derivative by a time derivative (at t = 0) when moving over
an exponential curve:

c∗(x) = arg min
c∈Rd ,‖c‖=1∫

Rd

Gρ(x − x′)
∣∣∣∣ d

dt
(Gs ∗ f )(γ c

x′,x(t))

∣∣∣∣
t=0

∣∣∣∣
2

dx′,
(44)

where

t �→ γ c
x′,x(t) = γ c

x (t) − x + x′ = γ c
x′(t). (45)

Because in (41) we average over directional derivatives in the
neighborhood of x we now average the time derivatives over
a family of neighboring exponential curves γ c

x′,x(t), which
are defined to start at neighboring positions x′ but having the
same spatial velocity as γ c

x (t). In R
d the distinction between

γ c
x′,x(t) and γ c

x′(t) is not important but it will be in the SE(d)-
case.

Definition 1 Let c∗(x) ∈ Tx(Rd) be the minimizer in (44).
We say γx(t) = x + expRd (tc∗(x)) is the first-order expo-
nential curve fit to image data f : R

d → R at location x.

4.2 Exponential Curve Fits in R
d of the Second Order

For second-order exponential curve fits we need the Hessian
matrix defined by

(Hs( f ))(x) = [
∂x j ∂xi (Gs ∗ f )(x)

]
, (46)

with Gs the Gaussian kernel given in Eq. (39). From now on
we use short notationHs := Hs( f ). When using the Hessian
matrix for curve fitting we aim to solve

c∗(x) = arg min
c∈R

d ,
‖c‖=1

|cTHs(x)c|. (47)

In this optimization problem we find the tangent c∗(x)
which minimizes the second-order directional derivative of
(Gaussian) regularized data Gs ∗ f . When all Hessian eigen-
values have the same sign we can solve the optimization
problem (47) via the Euler–Lagrange equation

Hs(x) c∗(x) = λ1c∗(x), (48)

and the minimizer is found as the eigenvector c∗(x) with the
smallest eigenvalue λ1.

Now, we can again put Eq. (47) in group-theoretical form
by reformulating it as an exponential curve fitting problem.
This is helpful in our subsequent generalizations to SE(d).
We again rely on exponential curves as defined in (43). In
(47) we replace the second-order directional derivative by a
second-order time derivative (at t = 0) when moving over
an exponential curve:

c∗(x) = arg min
c∈Rd ,‖c‖=1

∣∣∣ d2

dt2
(Gs ∗ f )(γ c

x (t))
∣∣∣
t=0

∣∣∣ . (49)

Remark 3 In general the eigenvalues of Hessian matrix Hs

donot have the same sign. In this casewe still take c∗(x) as the
eigenvector with smallest absolute eigenvalue (representing
minimal absolute principal curvature), though this no longer
solves (47).

Definition 2 Let c∗(x) ∈ Tx(Rd) be the minimizer in (49).
We say γx(t) = x+ expRd (tc∗(x)) is the second-order expo-
nential curve fit to image data f : R

d → R at location x.

Remark 4 In order to connect optimization problem (49)
with the first-order optimization (44), we note that (49) can
also be written as an optimization over a family of curves
γ c
x′,x defined in (45):
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Fig. 6 Family of neighboring
exponential curves, given a fixed
point g ∈ SE(2) and a fixed
tangent vector
c = c(g) ∈ Tg(SE(2)). Left our
choice of family of exponential
curves γ c

h,g for neighboring
h ∈ SE(2). Right exponential
curves γ c

h with c = c(g) are not
suited for local averaging in our
curve fits. The red curves start
from g (indicated with a dot),
the blue curves from h �= g
(Color figure online)

c∗(x) = arg min
c∈R

d ,
‖c‖=1

∣∣∣∣∣∣∣
∫

Rd

Gs(x − x′) d2

dt2
( f )(γ c

x′,x(t))

∣∣∣∣
t=0

∣∣∣∣∣∣∣
dx′,

(50)

because of linearity of the second-order time derivative.

5 Exponential Curve Fits in SE(2)

As mentioned in the introduction, we distinguish between
two approaches: a first-order optimization approach based on
a structure tensor on SE(2), and a second-order optimization
approach based on the Hessian on SE(2). The first-order
approach is new, while the second-order approach formalizes
the results in [28,34]. They also serve as an introduction to
the new, more technical, SE(3)-extensions in Sect. 6.

All curve optimization problems are based on the idea
that a curve (or a family of curves) fits the data well if a
certain quantity is preserved along the curve. This preserved
quantity is the data Ũ (γ̃ (t)) for the first-order optimization,
and the time derivative d

dt Ũ (γ̃ (t)) or the gradient ∇Ũ (γ̃ (t))
for the second-order optimization. After introducing a family
of curves similar to the ones used in Sect. 4 we will, for all
three cases, first pose an optimization problem, and then give
its solution in a subsequent theorem.

In this sectionwe rely on group-theoretical tools explained
in Sect. 2 (only the case d = 2), listed in panels (a) and (b) in
our table of notations presented in Appendix 5. Furthermore,
we introduce notations listed in the first part of panel (c) in
our table of notations in Appendix 5.

5.1 Neighboring Exponential Curves in SE(2)

Akin to (45) we fix reference point g ∈ SE(2) and velocity
components c = c(g) ∈ R

3, and we shall rely on a family

{γ̃ c
h,g} of neighboring exponential curves around γ̃ c

g . As we
will show in subsequent Lemma 1 neighboring curve γ̃ c

h,g
departs from h and has the same spatial and rotational veloc-
ity as the curve γ̃ c

g departing from g. This geometric idea
is visualized in Fig. 6, where it is intuitively explained why
one needs the initial velocity vector R̃h−1gc, instead of c in
the following definition for the exponential curve departing
from a neighboring point h close to g.

Definition 3 Let g ∈ SE(2) and c = c(g) ∈ R
3 be given.

Then we define the family {γ̃ c
h,g} of neighboring exponential

curves

t �→ γ̃ c
h,g(t) := γ̃

R̃h−1gc

h (t), (51)

with rotation matrix R̃h−1g ∈ SO(3) defined by

R̃h−1g :=
(

(R′)TR 0
0 1

)
, (52)

for all g = (x,R) ∈ SE(2) and all h = (x′,R′) ∈ SE(2),
with R,R′ ∈ SO(2) a counterclockwise rotation by, respec-
tively, angle θ and θ ′.

Lemma 1 Exponential curve γ̃ c
h,g departing from h ∈

SE(2) given by (51) has the same spatial and angular veloc-
ity as exponential curve γ̃ c

g departing from g ∈ SE(2).
On the Lie algebra level, we have that the initial velocity

component vectors of the curves γ̃ c
g and γ̃ c

h,g relate via c �→
R̃h−1gc.

On the Lie group level, we have that the curves themselves
γ̃ c
g (·) = (xg(·),Rg(·)), γ̃ c

h,g(·) = (xh(·),Rh(·)) relate via

xh(t) = xg(t) − x + x′,
Rh(t) = Rg(t)R−1R′ ⇔ θh(t) = θg(t) − θ + θ ′. (53)
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Proof The proof follows from the proof of a more general
theoremon the SE(3) casewhich follows later (in Lemma 3).

��

Remark 5 Eq. (53) is the extension of Eq. (45) on R
2 to the

SE(2) group.

Additional geometric background is given in Appendix 2.

5.2 Exponential Curve Fits in SE(2) of the First Order

For first-order exponential curvefitswe solve an optimization
problem similar to (44) given by

c∗(g) = arg min
c∈R

3,
‖c‖μ=1

∫
SE(2)

G̃ρ(h−1g)

∣∣∣∣ ddt Ṽ (γ̃ c
h,g(t))

∣∣∣∣
t=0

∣∣∣∣
2

dμ(h),

(54)

with Ṽ = G̃s ∗ Ũ , g = (x,R), h = (x′,R′) and dμ(h) =
dx′dμSO(2)(R′) = dx′dθ ′. Here we first regularize the data
with spatial and angular scale s = (sp, so) and then average
over a family of curves where we use spatial and angular
scale ρ = (ρp, ρo). Here sp, ρp > 0 are isotropic scales on
R
2 and so, ρo > 0 are scales on S1 of separable Gaussian

kernels, recall (27). Recall also (24) for the definition of the
norm ‖ · ‖μ. When solving this optimization problem the
following structure matrix appears

Ss,ρ(Ũ ))(g) =
∫

SE(2)

G̃ρ(h−1g)

·R̃T
h−1g∇ Ṽ (h)(∇ Ṽ (h))T R̃h−1g dμ(h). (55)

In the remainder we use short notation Ss,ρ := Ss,ρ(Ũ ). We
assume that Ũ , ρ, s, and g are chosen such that Ss,ρ(g) is a
non-degenerate matrix. The optimization problem is solved
in the next theorem.

Theorem 1 (First-Order Fit via Structure Tensor) The nor-
malized eigenvectorMμc∗(g)with smallest eigenvalue of the
rescaled structure matrix MμSs,ρ(g)Mμ provides the solu-
tion c∗(g) to optimization problem (54).

Proof We will apply four steps. In the first step we write
the time derivative as a directional derivative, in the second
step we express the directional derivative in the gradient. In
the third step we put the integrand in matrix-vector form. In
the final step we express our optimization functional in the
structure tensor and solve the Euler–Lagrange equations.

For the first step we use (51) and the fundamental property
(17) of exponential curves such that via application of (13):∣∣∣∣ ddt

(
Ṽ (γ̃ c

h,g(t))
)∣∣∣∣

t=0

∣∣∣∣
2

=
∣∣∣〈dṼ |γ̃ c

h,g(0)
, ˙̃γ c

h,g(0)〉
∣∣∣2

=
∣∣∣〈dṼ |h, R̃h−1gc〉

∣∣∣2 , (56)

where we use short notation R̃h−1gc = ∑3
i=1(R̃h−1gc)

iAi |h .
In the second step we use the definition of the gradient

(28) and the metric tensor (23) to rewrite this expression to∣∣∣〈dṼ |h, R̃h−1gc)〉
∣∣∣2 =

∣∣∣Gμ

∣∣
h (∇ Ṽ (h), R̃h−1gc)

∣∣∣2 . (57)

Then, in the third step we write this in vector-matrix form
and we obtain via (28)∣∣∣Gμ

∣∣
h(∇ Ṽ (h), R̃h−1gc)

∣∣∣2

=
∣∣∣cTMμ2R̃T

h−1g∇ Ṽ (h)

∣∣∣2
= cTMμ2R̃T

h−1g∇ Ṽ (h)(∇ Ṽ (h))T R̃h−1gMμ2c, (58)

where we used the fact that Mμ2 and R̃T
h−1g

commute.
Finally, we use the structure tensor definition (55) to

rewrite the convex optimization functional in (54) as

E(c) :=
∫

SE(2)

G̃ρ(h−1g)

∣∣∣∣ ddt Ṽ (γ̃ c
h,g(t))

∣∣∣∣
t=0

∣∣∣∣
2

dμ(h)

= cTMμ2Ss,ρMμ2c, (59)

while the boundary condition ‖c‖μ = 1 can be written as

ϕ(c) := cTMμ2c − 1 = 0. (60)

The Euler–Lagrange equation reads ∇E(c∗) = λ1∇ϕ(c∗),
with λ1 the smallest eigenvalue of MμSs,ρ(g)Mμ and we
have

Mμ2Ss,ρ(g)Mμ2c∗(g) = λ1Mμ2c∗(g)
�

MμSs,ρ(g)Mμ(Mμc∗(g)) = λ1(Mμc∗(g)), (61)

from which the result follows. ��
The next remark explains the frequent presence of the Mμ

matrices in (69).

Remark 6 The diagonal Mμ matrices enter the functional
due to the gradient definition (28), and they enter the bound-
ary condition via ‖c‖2μ = cTMμ2c = 1. In both cases they
come from themetric tensor (23). Parameterμwhich controls
the stiffness of the exponential curves has physical dimension
[Length]−1.As a result, the normalized eigenvectorMμc∗(g)
is, in contrast to c∗(g), dimensionless.
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5.3 Exponential Curve Fits in SE(2) of the Second
Order

We now discuss the second-order optimization approach
based on the Hessian matrix. At each g ∈ SE(2) we define
a 3 × 3 non-symmetric Hessian matrix

(Hs(Ũ ))(g) =
[
A jAi (Ṽ )(g)

]
, with Ṽ = G̃s ∗ Ũ , (62)

and where i denotes the row index and j denotes the column
index, and with G̃s a Gaussian kernel with isotropic spatial
part as described in Eq. (27). In the remainder wewriteHs :=
Hs(Ũ ).

Remark 7 As the left-invariant vector fields are non-com-
mutative, there are many ways to define the Hessian matrix
on SE(2), since the ordering of the left-invariant derivatives
matters. From a differential geometrical point of view our
choice (62) is correct, as we motivate in Appendix 4.

For second-order exponential curve fits we consider 2 differ-
ent optimization problems. In the first case we minimize the
second-order derivative along the exponential curve:

c∗(g) = arg min
c∈R3,‖c‖μ=1

∣∣∣∣ d2

dt2
Ṽ (γ̃ c

g (t))

∣∣∣∣
t=0

∣∣∣∣ . (63)

In the second case we minimize the norm of the first-order
derivative of the gradient of the neighboring family of expo-
nential curves:

c∗(g) = arg min
c∈R3,‖c‖μ=1

∫
SE(2)

G̃ρ(h−1g)·

Gμ

(
d
dt ∇ Ṽ (γ̃ c

h,g(t))
∣∣∣
t=0

, d
dt ∇ Ṽ (γ̃ c

h,g(t))
∣∣∣
t=0

)
dμ(h),

(64)

with again Ṽ = G̃s ∗ Ũ .

Remark 8 Optimization problem (63) can also be written
as an optimization problem over the neighboring family of
curves, as it is equivalent to problem:

c∗(g) = arg min
c∈R

3,
‖c‖μ=1

∣∣∣∣
∫

SE(2)

G̃s(h
−1g)

d2

dt2
Ũ (γ̃ c

h,g(t))

∣∣∣∣
t=0

dμ(h)

∣∣∣∣.

(65)

In the next two theoremswe solve these optimization prob-
lems.

Theorem 2 (Second-Order Fit via Symmetric SumHessian)
Let g ∈ SE(2) be such that the eigenvalues of the rescaled
symmetrized Hessian

1

2
M−1

μ (Hs(g) + (Hs(g))T )M−1
μ

have the same sign. Then the normalized eigenvector
Mμc∗(g) with smallest eigenvalue of the rescaled sym-
metrized Hessian matrix provides the solution c∗(g) of
optimization problem (63).

Proof Similar to the proof of Theorem 1 we first write the
time derivative as a directional derivative using Eq. (13).
Since now we have a second-order derivative this step is
applied twice:

∣∣∣∣ d2

dt2
Ṽ (γ̃ c

g (t))
∣∣∣
t=0

∣∣∣∣ =
∣∣∣∣ d

dt

3∑
i=1

ciAi Ṽ (γ̃ c
g (t))

∣∣∣
t=0

∣∣∣∣

=
∣∣∣∣

3∑
i, j=1

ci c jA j (Ai Ṽ )(g)

∣∣∣∣. (66)

Then we write the result in matrix-vector form and split the
matrix in a symmetric and anti-symmetric part∣∣∣∣∣∣

3∑
i, j=1

ci c jA j (Ai Ṽ )(g)

∣∣∣∣∣∣ =
∣∣∣cTHs(g)c

∣∣∣

=
∣∣∣∣12cT (Hs(g) + (Hs(g))T )c

+ 1

2
cT (Hs(g) − (Hs(g))T )c

∣∣∣∣
= 1

2

∣∣∣cT (Hs(g) + (Hs(g))T )c
∣∣∣ ,
(67)

where only the symmetric part remains. Finally, the optimiza-
tion functional in (63) (which is convex if the eigenvalues
have the same sign) can be written as

E(c) :=
∣∣∣∣ d2

dt2
Ṽ (γ̃ c

g (t))

∣∣∣∣
t=0

∣∣∣∣
= 1

2

∣∣∣cT (Hs(g) + (Hs(g))T )c
∣∣∣ . (68)

Again we have the boundary condition ϕ(c) = cTMμ2c −
1 = 0. The result follows using the Euler–Lagrange formal-
ism ∇E(c∗) = λ1∇ϕ(c∗):
1

2
(Hs(g) + (Hs(g))T )c∗(g) = λ1Mμ2c∗(g)

⇔ 1

2
M−1

μ (Hs(g) + (Hs(g))T )M−1
μ (Mμc∗(g))

= λ1(Mμc∗(g)), (69)
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which boils down to finding the eigenvector with minimal
absolute eigenvalue |λ1| which gives our result. ��
Theorem 3 (Second-Order Fit via Symmetric Product
Hessian) Let ρp, ρo, sp, so > 0. The normalized eigenvec-
tor Mμc∗(g) with smallest eigenvalue of matrix

M−1
μ

∫
SE(2)

G̃ρ(h−1g) · R̃T
h−1g(H

s(h))T

M−2
μ Hs(h)R̃h−1g dμ(h)M−1

μ (70)

provides the solution c∗(g) of optimization problem (64).

Proof First we use the definition of the gradient (28) and
then we again rewrite the time derivative as a directional
derivative:

d

dt
∇ Ṽ (γ̃ c

h,g(t))

∣∣∣∣
t=0

= d

dt

3∑
i=1

Ai Ṽ (γ̃ c
g (t))μ−2

i Ai |γ̃ c
g (t)

∣∣∣∣
t=0

=
3∑

i, j=1

c̃ jA jAi Ṽ (h)μ−2
i Ai |h (71)

for c̃ = R̃h−1gc, recall (52), and where μi = μ for i = 1, 2
and μi = 1 for i = 3. Here we use γ̃ c

h,g(0) = h, and the
formula for left-invariant vector fields (10). Now insertion of
(71) into the metric tensor Gμ (23) yields

Gμ

(
d

dt
∇ Ṽ (γ̃ c

h,g(t))

∣∣∣∣
t=0

,
d

dt
∇ Ṽ (γ̃ c

h,g(t))

∣∣∣∣
t=0

)

= c̃T (Hs(h))TM−2
μ Hs(h)c̃

= cT R̃
T
h−1g(H

s(h))TM−2
μ Hs(h)R̃h−1gc. (72)

Finally, the convex optimization functional in (64) can be
written as

E(c) := cT
( ∫
SE(2)

G̃ρ(h−1g) · R̃T
h−1g(H

s(h))T

M−2
μ Hs(h)R̃h−1g dμ(h)

)
c. (73)

Again we have the boundary condition ϕ(c) = cTMμ2c −
1 = 0 and the result follows by application of the Euler–
Lagrange formalism: ∇E(c∗) = λ1∇ϕ(c∗). ��

6 Exponential Curve Fits in SE(3)

In this section we generalize the exponential curve fit theory
from the preceding chapter on SE(2) to SE(3). Because our

data on the group SE(3) was obtained from data on the quo-
tientR3

� S2, we will also discuss projections of exponential
curve fits on the quotient.

We start in Sect. 6.1 with some preliminaries on the quo-
tient structure (3). Here we will also introduce the concept of
projected exponential curve fits. Subsequently, in Sect. 6.2,
we provide basic theory on how to obtain the appropriate
family of neighboring exponential curves. More details can
be found in Appendix 2. In Sect. 6.3 we formulate exponen-
tial curve fits of the first order as a variational problem. For
that we define the structure tensor on SE(3), which we use
to solve the variational problem in Theorems 4 and 5. Then
we present the twofold algorithm for achieving torsion-free
exponential curve fits. In Sect. 6.4 we formulate exponential
curve fits of the second order as a variational problem. Then
we define the Hessian tensor on SE(3), which we use to
solve the variational problem in Theorem 6. Again torsion-
free exponential curve fits are accomplished via a twofold
algorithm.

Throughout this section we will rely on the differential
geometrical tools of Sect. 2, listed in panels (a) and (b) in
in Table 1 in Appendix 5. We also generalize concepts on
exponential curve fits introduced in the previous section to
the case d = 3 (requiring additional notation). They are listed
in panel (c) in the table in Appendix 5.

6.1 Preliminaries on the Quotient R
3

� S2

Now let us set d = 3, and let us assume inputU is given and
let us first concentrate on its domain. This domain equals
the joint space R

3
� S2 of positions and orientations of

dimension 5, whichwe identifiedwith a 5-dimensional group
quotient of SE(3),where SE(3) is of dimension6 (recall (3)).
For including a notion of alignment it is crucial to include
the non-commutative relation in (4) between rotations and
translation, and not to consider the space of positions and
orientations as a flat Cartesian product. Therefore, we model
the joint space of positions and orientations as the Lie group
quotient (3), where

SO(2) ≡ Stab(a) = {R ∈ SO(3) | Ra = a}

for reference axis a = ez = (0, 0, 1)T . Within this quotient
structure two rigid bodymotions g = (x,R), g′ = (x′,R′) ∈
SE(3) are equivalent if

g′ ∼ g ⇔ (g′)−1g ∈ {0} × SO(2) ⇔
x − x′ = 0 and ∃Rez ,α∈SO(2) : (R′)−1R = Rez ,α.

Furthermore, one has the action � of g = (x,R) ∈ SE(3)
onto (y,n) ∈ R

3 × S2, which is defined by

g � (y,n) = (x,R) � (y,n) := (x + Ry,Rn). (74)
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As a result we have

g′ ∼ g ⇔ g′ � (0, a) = g � (0, a).

Thereby, a single element in R
3

� S2 can be considered as
the equivalence class of all rigid body motions that map ref-
erence position and orientation (0, a) onto (x,n). Similar
to the common identification of S2 ≡ SO(3)/SO(2), we
denote elements of the Lie group quotient R3

� S2 by (x,n).

6.1.1 Legal Operators

Let us recall from Sect. 3 that exponential curve fits induce
gauge frames. Note that both the induced gauge frame
{B1, . . . ,B6} and the non-adaptive frame {A1, . . . ,A6} are
defined on the Lie group SE(3), and cannot be defined on
the quotient. Nevertheless, combinations of them can be well
defined onR

3
�S2 (e.g.,�R3 = A2

1+A2
2+A2

3 iswell defined
on the quotient). This brings us to the definition of so-called
legal operators, as shown in [29, Thm. 1]. In short, the oper-
ator Ũ �→ Φ̃(Ũ ) is legal (left-invariant and well defined on
the quotient) if and only if

Φ̃ = Φ̃ ◦ Rhα for all α ∈ [0, 2π).

Φ̃ ◦ Lg = Lg ◦ Φ̃ for all g ∈ SE(3), (75)

recall (7), where

hα := (0,Rez ,α). (76)

with the Rez ,α the counterclockwise rotation about ez . Such
legal operators relate one-to-one to operators Φ : L2(R

3
�

S2) → L2(R
3

� S2) via

U �→ Φ(U ) ↔ Ũ �→ Φ̃(Ũ ) = Φ̃(U ),

relying consequently on (1).

6.1.2 Projected Exponential Curve Fits

Action (74) allows us to map a curve γ̃ (·) = (x(·),R(·)) in
SE(3) onto a curve (x(·),n(·)) on R

3
� S2 via

(x(t),n(t)) := γ̃ (t) � (0, ez) = (x(t),R(t) ez). (77)

This can be done with exponential curve fits γ̃
c=c∗(g)
g (t) to

define projected exponential curve fits.

Definition 4 We define for g = (x,Rn) the projected expo-
nential curve fit

γ ∗
(x,n)(t) := γ̃

c∗(g)
g (t) � (0, ez). (78)

Lemma 2 The projected exponential curve fit is well defined
on thequotient, i.e., the right-hand sideof (78) is independent
of the choice ofRn s.t.Rnez = n, if the optimal tangent found
in our fitting procedure satisfies:

c∗(ghα) = ZT
α c

∗(g), for all α ∈ [0, 2π ], (79)

and for all g ∈ SE(3), with

Zα :=
(
Rez ,α 0
0 Rez ,α

)
∈ SO(6). (80)

Proof For well-posed projected exponential curve fits we
need the right-hand side of (78) to be independent of Rn s.t.
Rnez = n, i.e., it should be invariant under g → ghα . There-
fore, we have the following constraint on the fitted curves:

γ̃
c∗(g)
g (t) � (0, ez) = γ̃

c∗(ghα)
ghα

(t) � (0, ez). (81)

Then the constraint on the optimal tangent (79) follows from
fundamental identity

(γ̃ c
ghα

(·)) = γ̃ Zαc
g (·) hα, (82)

which holds2 for all hα . We apply this identity (82) to the
right-hand side of (81) and use the definition of � defined in
(74) yielding:

γ̃
c∗(g)
g (t) � (0, ez) = γ̃

Zαc∗(ghα)
g (t)hα � (0, ez)

�
γ̃
c∗(g)
g (t) � (0, ez) = γ̃

Zαc∗(ghα)
g (t) � (0, ez)

�
c∗(g) = Zαc∗(ghα). (83)

Finally our constraint (79) follows from ZT
α = Z−1

α . ��

6.2 Neighboring Exponential Curves in SE(3)

Here we generalize the concept of family of neighboring
exponential curves (45) in the R

d -case, and Definition 3 in
the SE(2)-case, to the SE(3)-case.

Definition 5 Given a fixed reference point g ∈ SE(3) and
velocity component c = c(g) = (c(1)(g), c(2)(g)) ∈ R

6, we
define the family {γ̃ c

h,g(·)} of neighboring exponential curves
by

t �→ γ̃ c
h,g(t) := γ̃

R̃h−1gc

h (t), (84)

2 Equation (82) follows from (122) in Appendix 2, by settingQ = Zα .
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Fig. 7 Illustration of the family of curves γ̃ c
h,g in SE(3). Left The

(spatially projected) exp-curve t �→ P
R3 γ̃ c

g (t), with g = (x,Rn) in red.
The frames indicate the rotation part PSO(3)γ̃

c
g (t), which for clarity we

depicted only at two time instances t . Middle neighboring exp-curve
t �→ γ̃ c

g,h(t) with h = (x′,Rn), x �= x′ in blue, i.e., neighboring

exp-curve departing with same orientation and different position. Right
exp-curve t �→ γ̃ c

g,h(t) with h = (x,Rn′ ), n′ �= n, i.e., the neighboring
exp-curve departing with same position and different orientation (Color
figure online)

with rotation matrix R̃h−1g ∈ SO(6) defined by

R̃h−1g :=
(

(R′)TR 0
0 (R′)TR

)
, (85)

for all g = (x,R), h = (x′,R′) ∈ SE(3).

The next lemmamotivates our specific choice of neighboring
exponential curves. The geometric idea is visualized in Fig. 7
and is in accordance with Fig. 6 on the SE(2)-case.

Lemma 3 Exponential curve γ̃ c
h,g departing from h =

(x′,R′) ∈ SE(3) given by (84) has the same spatial and
rotational velocity as exponential curve γ̃ c

g departing from
g = (x,R) ∈ SE(3).

On the Lie algebra level, we have that the initial velocity
component vectors of the curves γ̃ c

g and γ̃ c
h,g relate via c �→

R̃h−1gc.
On the Lie group level, we have that the curves themselves

γ̃ c
g (·) = (xg(·),Rg(·)), γ̃ c

h,g(·) = (xh(·),Rh(·)) relate via

xh(t) = xg(t) − x + x′,
Rh(t) = Rg(t)R−1R′. (86)

Proof See Appendix 2. ��
Remark 9 Lemma 3 extends Lemma 1 to the SE(3) case.
When projecting the curves γ̃ c

g and γ̃ c
h,g into the quotient,

one has that curves γ̃ c
g � (0, a) and γ̃ c

h,g � (0, a) in R
3

� S2

carry the same spatial and angular velocity.

Remark 10 In order to construct the family of neighboring
exponential curves in SE(3), one applies the transformation
c �→ R̃h−1gc in the Lie algebra. Such a transformation pre-
serves the left-invariant metric:

1 = G|γ̃ c
g (t) ( ˙̃γ c

g (t), ˙̃γ c
g (t)) = G|γ̃ c

h,g(t)
( ˙̃γ c

h,g(t), ˙̃γ c
h,g(t)),

(87)

for all h ∈ SE(3) and all t ∈ R. For further differential
geometrical details see Appendix 2.

6.3 Exponential Curve Fits in SE(3) of the First Order

Now let us generalize the first-order exponential curve fits of
Theorem 1 to the setting of R

3
� S2. Here we first consider

the following optimization problem on SE(3) (generalizing
(44)):

c∗(g) = arg min
c∈R

6,
‖c‖μ=1,
c6=0

∫
SE(3)

G̃ρ(h−1g)

∣∣∣∣∣
d

dt
Ṽ (γ̃ c

h,g(t))

∣∣∣∣
2

t=0

∣∣∣∣∣ dμ(h),

(88)

Recall that ‖ · ‖μ was defined in (24), Ṽ in (26), and μ

in (25). The reason for including the condition c6 = 0 will
become clear after defining the structure matrix.

6.3.1 The Structure Tensor on SE(3)

We define structure matrices Ss,ρ of Ũ by

(Ss,ρ(Ũ ))(g) =
∫

SE(3)

G̃ρ(h−1g) · R̃T
h−1g∇s

Ũ (h)(∇sŨ (h))T R̃h−1gdμ(h), (89)

where we use matrix R̃h−1g defined in Eq. (85). Again we

use short notation Ss,ρ := Ss,ρ(Ũ ).
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Remark 11 By construction (1) and (10) we have

(A6Ũ )(g) = lim
h↓0

Ũ (g ehA6) − Ũ (g)

h
= 0,

so the null space of our structure matrix includes

N := span{(0, 0, 0, 0, 0, 1)T }. (90)

Remark 12 We assume that s = (sp, so) and function Ũ are
chosen in such a way that the null space of the structure
matrix is precisely equal to N (and not larger).

Due to the assumption in Remark 12, we need to impose the
condition

c6 = 0 ⇔ ˙̃γ c
g (0) ∩ N = ∅ (91)

in our exponential curveoptimization to avoidnon-uniqueness
of solutions. To clarify this, we note that the optimization
functional in (88) can be rewritten as

E(c) := cTMμ2Ss,ρ(g)Mμ2c,

as we will show in the next theorem where we solve the
optimization problem for first-order exponential curve fits.
Indeed, for uniqueness we need (91) as otherwise we would
have E(c + Mμ−2c0) = E(c) for all c0 ∈ N .

Theorem 4 (First-Order Fit via Structure Tensor) The nor-
malized eigenvector Mμc∗(g) with smallest non-zero eigen-
value of the rescaled structure matrix MμSs,ρ(g)Mμ pro-
vides the solution c∗(g) to optimization problem (88).

Proof All steps (except for the final step of this proof, where
the additional constraint c6 = 0 enters the problem) are anal-
ogous to the proof of the first-order method in the SE(2) case:
the proof of Theorem 1.Wewill now shortly repeat these first
steps. First we rewrite the time derivative as a directional
derivative which is then rewritten to the gradient

∣∣∣∣ ddt
(
Ṽ (γ̃ c

h,g(t))
)∣∣∣∣

t=0

∣∣∣∣
2

=
∣∣∣〈dṼ |γ̃ c

h,g(0)
, ˙̃γ c

h,g(0)〉
∣∣∣2

=
∣∣∣〈dṼ |h, R̃h−1gc〉

∣∣∣2

=
∣∣∣Gμ

∣∣
h (∇ Ṽ (h), R̃h−1gc)

∣∣∣2. (92)

We then put this result in matrix-vector form:

∣∣∣Gμ

∣∣
h (∇ Ṽ (h), R̃h−1gc)

∣∣∣2
= cTMμ2R̃T

h−1g(∇ Ṽ (h))(∇ Ṽ (h))T R̃h−1gMμ2c. (93)

This again yields the following optimization functional

E(c) =
∫
SE(3)

G̃ρ(h−1g)

∣∣∣∣ ddt Ṽ (γ̃ c
h,g(t))

∣∣∣∣
t=0

∣∣∣∣
2

dμ(h)

= cTMμ2Ss,ρ(g)Mμ2c. (94)

So, just as in the SE(2)-case we have the following Euler–
Lagrange equations:

Mμ2Ss,ρ(g)Mμ2c∗(g) = λ1Mμ2c∗(g)
�

MμSs,ρ(g)Mμ(Mμc∗(g)) = λ1 (Mμc∗(g)). (95)

Again the second equality in (95) follows from the first by
multiplication by M−1

μ .
Finally, the constraint c6 = 0 is included in our opti-

mization problem (88) to excluded the null space (90) from
the optimization; therefore, we take the eigenvector with the
smallest non-zero eigenvalue providing us the final result. ��

6.3.2 Projected Exponential Curve Fits in R
3

� S2

In reducing the problem to R
3

� S2 we first note that

Ss,ρ(g hα) = ZT
α S

s,ρ(g)Zα, (96)

with Zα defined in Eq. (80), and where we recall hα =
(0,Rez ,α).

In the following theorem we summarize the well-posed-
ness of our projected curve fits on data U : R

3
� S2 → R

and use the quotient structure to simplify the structure tensor.

Theorem 5 (First-Order Fit andQuotient Structure) Let g =
(x,Rn) and h = (x′,Rn′) where Rn and Rn′ denote any
rotation which maps ez onto n and n′, respectively. Then, the
structure tensor defined by (89) can be expressed as

Ss,ρ(g) = 2π
∫

R3

∫

S2

GR
3

sp (x − x′) GS2
s0 (RT

n′n)

R̃T
h−1g∇ Ṽ (h) (∇ Ṽ (h))T R̃h−1gdσ(n′)dx′. (97)

The normalized eigenvectorMμc∗(x,Rn) with smallest non-
zero eigenvalue of the rescaled structure matrix
MμSs,ρ(g)Mμ provides the solution of (88) and defines a
projected curve fit in R

3
� S2:

γ ∗
(x,n)(t) =

(
γ̃
c∗(x,Rn)
(x,Rn)

(t)
)

� (0, ez), (98)

which is independent of the choice of Rn′ and Rn.
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Fig. 8 Volume rendering of a
3D test-image. The real part of
the orientation score (cf.
Sect. 7.1) provides us a density
U on R

3
� S2. Left spatial parts

of exponential curves (in black)
aligned with spatial generator
A3|(x,Rnmax (x))

, where
nmax(x) = argmax

n∈S2
|U (x,n)|.

Right spatial parts of our
exponential curve fits Eq. (104)
computed via the algorithm in
Sect. 6.3.3, which better follow
the curvilinear structures

Proof The proof consists of two parts. First we prove that
(97) follows from the structure tensor defined in (89). Then
we use Lemma 2 to prove that our projected exponential
curve fit (98) is well defined. For both we use Theorem 4 as
our venture point.

For the first part of the proof we note that the integrand in
the structure tensor definition Eq. (89) is invariant under h �→
hhα = h(0,Rez ,α) on the integration variable. To show this
we first note that, Zα defined in (80), satisfies Zα(Zα)T = I .
Furthermore, we have

∇ Ṽ (hhα) ≡ ZT
α ∇ Ṽ (h), R̃

T
(hhα)−1g = R̃

T
h−1gZα

and G̃ρ(hhα) = G̃ρ(h). Therefore, integration over third
Euler-angle α is no longer needed in the definition of the
structure tensor (89) as it just produces a constant 2π factor.

For the second part we apply Lemma 2 and thereby it
remains to be shown that condition c∗(ghα) = ZT

α c
∗(g) is

satisfied. This directly follows from (96):

Ss,ρ(g hα)c∗(g hα) = λ1c∗(g hα)

�
ZT

α S
s,ρ(g)Zαc∗(g hα) = λ1c∗(g hα)

�
Ss,ρ(g)

(
Zαc∗(g hα)

) = λ1
(
Zαc∗(g hα)

)
�

Zαc∗(g hα) = c∗(g), (99)

which shows our condition. ��

6.3.3 Torsion-Free Exponential Curve Fits of the First
Order via a Twofold Approach

Theorem 4 provides us exponential curve fits that possi-
bly carry torsion. From Eq. (22) we deduce that the torsion
norm of such an exponential curve fit is given by |τ | =

1
‖c(1)‖ (c1c4 + c2c5 + c3c6)|κ|. Together with the fact that
we exclude the null space N from our optimization domain
by including constraint c6 = 0, this results in insisting
on zero torsion along horizontal exponential curves where
c1 = c2 = 0. Along other exponential curves torsion appears
if c1c4 + c2c5 �= 0.

Now the problem is that insisting, a priori, on zero tor-
sion for horizontal curves while allowing non-zero torsion
for other curves is undesirable. On top of this, torsion is a
higher order less-stable feature than curvature. Therefore,
we would like to exclude it altogether from our exponential
curve fits presented in Theorems 4 and 5, by a different theory
and algorithm. The results of the algorithm show that even
if structures do have torsion, the local exponential curve fits
do not need to carry torsion in order to achieve good results
in the local frame adaptation, see, e.g., Fig. 8.

The constraint of zero torsion forces us to split our expo-
nential curve fit into a twofold algorithm:

Step 1 Estimate at g ∈ SE(3) the spatial velocity part
c(1)(g) from the spatial structure tensor.

Step 2 Move to a different location gnew ∈ SE(3) where a
horizontal exponential curve fitmakes sense and then
estimate the angular velocity c(2) from the rotation
part of the structure tensor over there.

This forced splitting is a consequence of the next lemma.

Lemma 4 Consider the class of exponential curves with
non-zero spatial velocity c(1) �= 0 such that their spatial
projections do not have torsion. Within this class the con-
straint c6 = 0 does not impose constraints on curvature if
and only if the exponential curve is horizontal.

Proof For a horizontal curve γ̃ c
g (t) we have χ = 0 ⇔ c1 =

c2 = 0 and indeed |τ | = c(1)·c(2)|κ|
‖c(1)‖ = c6|κ| = 0 and we

see that constraints c6 = 0 and |τ | = 0 reduce to only one
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constraint. The curvature magnitude stays constant along the
exponential curve and the curvature vector at t = 0, recall
Eq. (21), is in this case given by

κ(0) = 1

|c3|

⎛
⎝ c5c3

−c4c3

0

⎞
⎠ ,

which can be any vector orthogonal to spatial velocity c(1) =
(0, 0, c3)T . Now let us check whether the condition is nec-
essary. Suppose t �→ γ̃ c

g (t) is not horizontal, and suppose it

is torsion free with c6 = 0. Then we have c1c4 + c2c5 = 0,
as a result the initial curvature

κ(0) = 1

|c3|

⎛
⎝ c5c3

−c4c3

c4c2 − c1c5

⎞
⎠ ,

is both orthogonal to vector c(1) = (c1, c2, c3)T and orthog-
onal to (−c2, c1, 0)T , and thereby constrained to a one
dimensional subspace. ��
From these observations we draw the following conclusion
for our exponential curve fit algorithms.

Conclusion In order to allow for all possible curvatures
in our torsion-free exponential curve fits, we must relo-
cate the exponential curve optimization at g ∈ SE(3) in
Ũ : SE(3) → R to a position gnew ∈ SE(3) where a hori-
zontal exponential curve can be expected. Subsequently, we
can use Lemma 3 to transport the horizontal and torsion-free
curve through gnew, back to a torsion-free exponential curve
through g.

This conclusion is the central idea behind our following
twofold algorithm for exponential curve fits.

Algorithm Twofold Approach

The algorithm follows the subsequent steps:

Step 1a Initialization. Compute structure tensorSs,ρ(g) from
input image U : R

3 × S2 → R
+ via Eq. (97).

Step 1b Find the optimal spatial velocity:

c(1)(g) = arg min
c(1)∈R

3,

‖c(1)‖=μ−1

{(
c(1)

0

)T
Mμ2Ss,ρ(g)Mμ2

(
c(1)

0

)}
,

(100)

for g = (x,Rn), which boils down to finding the eigenvector
with minimal eigenvalue of the 3 × 3 spatial sub-matrix of
the structure tensor (89).

Step 2a Given c(1)(g) we aim for an auxiliary set of coeffi-
cients, wherewe also take into account rotational velocity. To

achieve this in a stable way we move to a different location
in the group:

gnew = (x,Rnnew), nnew = Rnc(1), (101)

and apply the transport of Lemma 3 afterwards. At gnew, we
enforce horizontality, see Remark 13 below, and we consider
the auxiliary optimization problem

cnew(gnew) = arg min
c∈R

6,
‖c‖μ=1,

c1=c2=c6=0

{
cTMμ2Ss,ρ(gnew)Mμ2c

}
. (102)

Here zero deviation from horizontality (34) and zero torsion
(22) is equivalent to the imposed constraint:

χ = 0 and |τ | = 0 ⇔ c1 = c2 = c6 = 0.

Step 2b The auxiliary coefficients cnew(gnew) = (0, 0,
c3(gnew), c4(gnew), c5(gnew), 0)T of a torsion-free, horizon-
tal exponential curve fit γ̃

cnew
gnew through gnew. Now we apply

transport (via Lemma 3) of this horizontal exponential curve
fit towards the corresponding exponential curve through g:

c∗
f inal(g) =

(
RT
n Rnnew 0
0 RT

n Rnnew

)
cnew(gnew). (103)

This gives the final, torsion-free, exponential curve fit t �→
γ̃
c∗(g)
g (t) in SE(3), yielding the final output projected curve

fit

t �→
(

γ̃
c∗f inal (g)
g (t)

)
� (0, ez) ∈ R

3 × S2, (104)

with g = (x,Rn), recall Eq. (74).

Remark 13 In step 2a of our algorithm we jump to a new
location gnew = (x,Rnnew) with possibly different orienta-
tion nnew such that spatial tangent vector

3∑
i=1

ci Ai |(x,Rnnew ) ,

points in the same direction as nnew ∈ S2, recall Eq. (31),
from which it follows that nnew is indeed given by (101). If
c(1) = (c1, c2, c3)T = a = (0, 0, 1)T then nnew = n.

Lemma 5 The preceding algorithm is well defined on the
quotient R

3
� S2 = SE(3)/({0} × SO(2)).

Proof To show that the preceeding algorithm is well defined
on the quotient, we need to show that the final result (104)
is independent on both the choice of of Rn ∈ SO(3) s.t.
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Rnez = n and the choice of Rnnew ∈ SO(3) s.t. Rnnewez =
nnew.

First, we show independence on the choice of Rn. We
apply Lemma 2 and thereby it remains to be shown that
condition c∗

final(ghα) = ZT
α c

∗
final(g) is satisfied. This follows

directly from Eq. (103) if as long as nnew found in Step 2a
is independent of the choice ofRn. This property indeed fol-
lows from c(1)(ghα) = RT

ez ,αc
(1)(g) which can be proven

analogously to (99). Then we have

nnew(ghα) = RnRez ,αc
(1)(ghα)

= RnRez ,αR
T
ez ,αc

(1)(g) = nnew(g). (105)

So we conclude that (104) is indeed independent on the
choice of Rn.

Finally, Eq. (104) is independent of the choice of Rnnew .
This follows from cnew(ghα) = ZT

α cnew(g) in Step 2a. Then
c∗
final in Eq. (103) is independent of the choice of Rnnew
because ZT

α in cnew �→ ZT
α cnew is canceled by Rnew �→

RnewRez ,α in Eq. (103). ��

In Fig. 8 we provide an example of spatially projected
exponential curve fits in SE(3) via the twofold approach.
Here we see that the resulting gauge frames better follow
the curvilinear structures of the data (in comparison to the
normal left-invariant frame).

6.4 Exponential Curve Fits in SE(3) of the Second
Order

In this section we will generalize Theorem 2 to the case
d = 3, where again we include the restriction to torsion-
free exponential curves.

6.4.1 The Hessian on SE(3)

For second-order curve fits we consider the following opti-
mization problem:

c∗(g) = arg min
c∈R6,‖c‖μ=1,c6=0

∣∣∣ d2

dt2
Ṽ (γ̃ c

g (t))
∣∣∣
t=0

∣∣∣ , (106)

with Ṽ = G̃s ∗ Ũ . Before solving this optimization problem
inTheorem6,wefirst define the 6×6non-symmetricHessian
matrix by

(Hs(Ũ ))(g) = [A jAi (Ṽ )](g) , with Ṽ = G̃s ∗ Ũ (107)

and where i = 1, . . . , 6 denotes the row index, and j =
1, . . . , 6 denotes the column index. Again we write Hs :=
Hs(Ũ ).

Theorem 6 (Second-Order Fit via Symmetric SumHessian)
Let g ∈ SE(3) be such that the symmetrized Hessian matrix
1
2M

−1
μ (Hs(g) + (Hs(g))T )M−1

μ has eigenvalues with the
same sign. Then the normalized eigenvector Mμc∗(g) with
smallest absolute non-zero eigenvalue of the symmetrized
Hessian matrix provides the solution c∗(g) of optimization
problem (106).

Proof Similar to the proof of Theorem 2 (only now with
summations from 1 to 5). Again we include our additional
constraint c6 = 0 by taking the smallest non-zero eigenvalue.

��
Remark 14 The restriction to g ∈ SE(3) such that the eigen-
values of the symmetrized Hessian carry the same sign is
necessary for a unique solution of the optimization. Note
that in case of our first-order approach via the positive defi-
nite structure tensor, no such cumbersome constraints arise.
In case g ∈ SE(3) is such that the eigenvalues of the sym-
metrized Hessian have different sign there are 2 options:

1. Move towards a neighboring point where the Hessian
eigenvalues have the same sign and apply transport
(Lemma 3, Fig. 7) of the exponential curve fit at the
neighboring point.

2. Take c∗(g) still as the eigenvector with smallest absolute
eigenvalue (representing minimal absolute principal cur-
vature), though this no longer solves (106).

6.4.2 Torsion-Free Exponential Curve Fits of the Second
Order via a Twofold Algorithm

In order to obtain torsion-free exponential curve fits of the
second order via our twofold algorithm, we follow the same
algorithm as in Subsection 6.3.3, but now with the Hessian
field Hs (107) instead of the structure tensor field.

Step 1a Initialization. Compute Hessian Hs(g) from input
image U : R

3 × S2 → R
+ via Eq. (107).

Step 1b Find the optimal spatial velocity by (100) where we
replace Mμ2Ss,ρ(g)Mμ2 by Hs(g).

Step2aWeagainfit a horizontal curve at gnew givenby (101).
The procedure is done via (102) where we again replace
Mμ2Ss,ρ(g)Mμ2 by Hs(g).

Step 2b Remains unchanged. We again apply Eq. (103) and
Eq. (104).

There are some serious computational technicalities in the
efficient computation of the entries of theHessian for discrete
input data, but this is outside the scope of this article and will
be pursued in future work.

Remark 15 In Appendix 3 we propose another twofold
second-order exponential curve fit method. Here one solves
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Fig. 9 In black the spatially
projected part of exponential
curve fits t �→ γ c

g (t) of the
second kind (fitted to the real
part of the 3D invertible
orientation score, for details
see Fig. 10) of the 3D image
visualized via volume rendering.
Left output of the twofold
approach outlined in Sect. 6.4.2.
Right output of the twofold
approach outlined in
Appendix 3 with sp = 1

2 ,
so = 1

2 (0.4)2, μ = 10

a variational problem for exponential curve fits where expo-
nentials are factorized over, respectively, spatial and angular
part. Empirically, this approach performs good (see, e.g.,
Fig. 9).

7 Image Analysis Applications

In this section we present examples of applications where the
use of gauge frame in SE(d) obtained via exponential curve
fits is used for defining data-adaptive left-invariant operators.
Before presenting the applications, we start by briefly sum-
marizing the invertible orientation score theory in Sect. 7.1.

In case d = 2 the application presented is the enhancing
of the vascular tree structure in 2D retinal images via differ-
ential invariants based on gauge frames. This is achieved by
extending the classical Frangi vesselness filter [36] to dis-
tributions Ũ on SE(2). Gauge frames in SE(2) can also be
used in non-linear multiple-scale crossing-preserving diffu-
sions as demonstrated in [63], but we will not discuss this
application in this paper.

In case d = 3 the envisioned applications include blood
vessel detection in 3D MR angiography, e.g., the detection
of the Adamkiewicz vessel, relevant for surgery planning.
Also in extensions towards fiber-enhancement of diffusion-
weighted MRI [29,30] the non-linear diffusions are of inter-
est. Some preliminary practical results have been conducted
on such 3Ddatasets [21,23,42], but herewe shall restrict our-
selves to very basic artificial 3D datasets to show a proof of
concept, and leave these three applications for future work.

7.1 Invertible Orientation Scores

In the image analysis applications discussed in this section
our function U : R

d
� Sd−1 → R is given by the real part

of an invertible orientation score:

U (x,n) = Re{Wψ f (x,Rn)},

where Rn is any rotation mapping reference axis a onto n ∈
Sd−1, where f ∈ L2(R

d) denotes a input image, and where
ψ is a so-called ’cake-wavelet’ and with

Wψ f (x,Rn) =
∫

Rd

ψ(R−1
n (y − x)) f (y) dy. (108)

For d > 2 we restrict ourselves to wavelets ψ satisfying

ψ(R−1
a,αx) = ψ(x), for all x ∈ R

d (109)

and for all rotations Ra,α ∈ Stab(a) (for d = 3 this means
for all rotations about axis a, Eq. (2)). As a result U is well
defined on the left cosetsR

d
�Sd−1 = SE(d)/({0}×SO(d−

1)) as the choice of Rn ∈ SO(d) mapping a onto n is irrele-
vant. See Fig. 10 for an example of a 3D orientation score.

If we restrict to disk-limited images, exact reconstruction
is performed via the adjoint:

f = W∗
ψWψ f

= F−1

⎡
⎢⎣ω �→ 1

(2π)
d
2 Mψ(ω)

∫
SO(d)

F[Wψ f (·,R)](ω)

Fψ(R−1ω)dμSO(d)(R)

⎤
⎥⎦ . (110)

ifψ is an admissible wavelet. The condition for admissibility
of wavelets ψ are given in [24]. In this article, the wavelets
ψ are given either by the 2D ‘cake-wavelets’ used in [6,23]
or by their recent 3D equivalents given in [42]. Detailed for-
mulas and recipes to construct such wavelets efficiently can
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Fig. 10 Visualization of one
iso-level of the real part of an
invertible orientation score of a
3D image created via the
cake-wavelet in Fig. 11

be found in [42] and in order to provide the global intuitive
picture they are depicted in Fig. 11.

In the subsequent sections we consider two types of oper-
ators acting on the invertible orientation scores (recall Φ in
the commuting diagram of Fig. 3):

1. for d = 2, differential invariants on orientation scores
based on gauge frames {B1,B2,B3}.

2. for d = 2, 3, non-linear adaptive diffusions steered along
the gauge frames, i.e.,

W (x,n, t) = W̃ (x,Rn, t) = Φt (Ũ )(x,Rn), (111)

where W̃ (g, t), with t ≥ 0, is the solution of

⎧⎨
⎩

∂W̃
∂t (g, t) =

nd∑
i=1

Dii (Bi )
2
∣∣
g W̃ (g, t),

W̃ (g, 0) = Ũ (g),
(112)

where the gauge frame is induced by an exponential curve
fit to data Ũ at location g ∈ SE(d).

7.2 Experiments in SE(2)

We consider the application of enhancing and detecting the
vascular tree structure in retinal images. Such image process-
ing task is highly relevant as the retinal vasculature provides
non-invasive observation of the vascular system. A variety
of diseases such as glaucoma, age-related macular degenera-
tion, diabetes, hypertension, arteriosclerosis, or Alzheimer’s
affect the vasculature and may cause functional or geomet-
ric changes [41]. Automated quantification of these defects
promises massive screenings for vascular-related diseases on
the basis of fast and inexpensive retinal photography. To
automatically assess the state of the retinal vascular tree,
vessel segmentation is needed. Because retinal images usu-
ally suffer from low contrast on small scales, the vasculature

123



J Math Imaging Vis (2016) 56:367–402 389

Fig. 11 Visualization of
cake-wavelets in 2D (top) and
3D (bottom). In 2D we fill up
the ‘pie’ of frequencies with
overlapping “cake pieces,” and
application of an inverse DFT
(see [6]) provides wavelets
whose real and imaginary parts
are, respectively, line and edge
detectors. In 3D we include
anti-symmetrization and the
Funk transform [22] on L2(S2)
to obtain the same, see [42]. The
idea is to redistribute spherical
data from orientations towards
circles laying in planes
orthogonal to those orientations.
Here, we want the real part of
our wavelets to be line detectors
(and not plate detectors) in the
spatial domain. In the figure one
positive iso-level is depicted in
orange and one negative
iso-level is depicted in blue
(Color figure online)

in the images needs to be enhanced prior to the segmenta-
tion. One well-established approach is the Frangi vesselness
filter [36] which is used in robust retinal vessel segmenta-
tion methods [14,51]. However, a drawback of the Frangi
filter is that it cannot handle crossings or bifurcations that
make up an important part of the vascular network. This is
precisely where the orientation score framework and the pre-
sented locally adaptive frame theory comes into play.

The SE(2)-vesselness filter, extending Frangi vesselness
[36] to SE(2) (cf. [40]) and based on the locally adapted
frame {B1,B2,B3} is given by the following left-invariant
operator:

Φ(Ũ ) =

⎧⎪⎨
⎪⎩
e
− R2

2σ21

(
1 − e

− S
2σ2

)
if Q ≥ 0,

0 if Q < 0.
,

with anisotropy measure: R = B 2
1 Ũ

B 2
2 Ũ + B 2

3 Ũ
,

structureness: S = (B 2
1 Ũ )2 + (B 2

2 Ũ + B 2
3 Ũ )2,

convexity: Q = B 2
2 U + B 2

3 U , (113)

withσ1 = 1
2 andσ2 = 0.2‖B 2

2 Ũ+B 2
3 Ũ‖∞. Here the decom-

position of the vesselness in structureness, anisotropy, and
convexity follows the same general principles of the ves-
selness. As in vessels are line-like structures, we use the
exponential curve fits of second order obtained via the sym-
metric product of the Hessian (i.e., solving the optimization
problem in Theorem 3).

Similarly to the vesselness filter [36], we need a mecha-
nism to robustly deal with vessels of different width. This is
why for this application we extend the (all-scale) orientation
scores to multiple-scale invertible orientation scores. Such
multiple-scale orientation scores [63] coincide with wavelet
transforms on the similitude group SI M(2) = R

2
�SO(2)×

R
+, where one uses a B-spline [32,69] basis decomposition

along the log-radial axis in the Fourier domain. In our exper-
iments we used N = 4, 12, or 20 orientation layers and a
decomposition centered around M = 4 discrete scales al
given by

al = amine
l (M−1)−1 log(amax/amin), (114)

l = 0, . . . , M − 1 where amax is inverse proportional to
the Nyquist-frequency ρn and amin close to the inner scale
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Fig. 12 From left to right: retinal image f (from HRF database), multi-scale vesselness filtering results for the multi-scale Frangi vesselness filter
on R

2, our SI M(2)-vesselness via invertible multi-scale orientation score based on left-invariant frame {A1,A2,A3}, and based on adaptive frame
{B1,B2,B3}

[33] induced by sampling (see [63] for details). Then, the
multiple-scale orientation score is given by the following
wavelet transformWψ f : SI M(2) → C:

Wψ f (x, θ, a) =
∫

Rd

ψ(a−1R−1
θ (y − x)) f (y) dy, (115)

and we again setU := Re{Wψ f }. Finally we define the total
integrated multiple-scale SI M(2)-vesselness by

(ΦSI M(2)(U ))(x)

:= μ−1∞
M−1∑
i=0

μ−1
i,∞

N∑
j=1

(Φ(U (·, ·, ·, ai )))(x, θ j ), (116)

where SE(2)-vesselness operator Φ is given by Eq. (113),
andwhereμ∞ andμi,∞ denotemaximaw.r.t. sup-norm‖·‖∞
taken over the subsequent terms.

Note that another option for constructing a SI M(2)-
vesselness is to use the non-adaptive left-invariant frame
{A1,A2,A3} instead of the gauge frame. This non-adaptive
SE(2)-vesselness operator is obtained by simply replac-
ing the Bi operators by the Ai operators in Eq. (113)
accordingly.

The aim of the experiments presented in this section is to
show the following advantages:

Advantage 1 The improvement of considering the mul-
tiple-scale vesselness filter via gauge frames
in SE(2), compared to multiple-scale ves-
selness [36] acting directly on images.

Advantage 2 Further improvement when using the gauge
frames instead of using the left-invariant vec-
tor fields in SE(2)-vesselness (113).

In the following experiment, we test these 3 tech-
niques (Frangi vesselness [36], SI M(2)-vesselness via the
non-adaptive left-invariant frame, and the newly proposed
SI M(2)-vesselness via gauge frames) on the publically

available3 High-Resolution Fundus (HRF) dataset [47],
containing manually segmented vascular trees by medical
experts. The HRF dataset consists of wide-field fundus pho-
tographs for a healthy, diabetic retinopathy and a glaucoma
group (15 images each). A comparison of the 3 vesselness
filters on a small patch is depicted in Fig. 12. Here, we see
that our method performs better both at crossing and non-
crossing structures.

Toperformaquantitative comparison,wedevised a simple
segmentation algorithm to turn a vesselness filtered image
V( f ) into a segmentation. First an adaptive thresholding is
applied, yielding a binary image

fB = Θ
([V( f ) − Gγ ∗ V( f )] − h

)
, (117)

where Θ is the unit step function, Gγ is a Gaussian of
scale γ = 1

2σ
2 � 1 and h is a threshold parameter. In

a second step, the connected morphological components in
fB are subject to size and elongation constraints. Compo-
nents counting less than τ pixels or showing elongations
below a threshold ν are removed. Parameters γ, τ , and ν

are fixed at 100 px, 500 px, and 0.85, respectively. The ves-
selness map V( f ) : R

2 → R is one of the three methods
considered.

The segmentation algorithm described above is evaluated
on the HRF dataset. Average sensitivity and accuracy over
the whole dataset are shown in Fig. 13 as a function of
the threshold value h. It can be observed that our method
performs considerably better than the one based on themulti-
scale Frangi filter. The segmentation results obtained with
SI M(2)-vesselness (116) based on gauge frames are more
stable w.r.t variations in the threshold h and the performance
on the small vasculature has improved as measured via the
sensitivity. Average sensitivity and accuracy at a threshold
of h = 0.05 compare well with other segmentation meth-
ods evaluated on the HRF dataset for the healthy cases (see
[14, Tab. 5], [40]). On the diabetic retinopathy and glaucoma

3 cf. http://www5.cs.fau.de/research/data/fundus-images/.
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Fig. 13 Left comparison of multiple-scale Frangi vesselness and
SI M(2)-vesselness via gauge frames. Average accuracy and sensitivity
on the HRF dataset over threshold values h. Shaded regions correspond

to ±1 σ . Right comparing of SI M(2)-vesselness with and without
including the gauge frame (i.e. using {A1,A2,A3} in Eq. (113))

Fig. 14 Center original image from HRF dataset (healthy subject
nr. 5). Rows the soft-segmentation (left) and the corresponding perfor-
mance maps (right) based on the hard segmentation (117). In green true
positives, in blue true negatives, in red false positives, compared toman-
ual segmentation by expert. First row SI M(2)-vesselness (116) based
on non-adaptive frame {A1,A2,A3}. Second row SI M(2)-vesselness
(116) based on the gauge frame (Color figure online)

group, our method even outperforms existing segmentation
methods.

Finally, regarding the second advantage we refer to
Fig. 14,where the SI M(2)-vesselness filtering via the locally

adaptive frame produces a visually much more appeal-
ing soft-segmentation of the blood vessels than SI M(2)-
vesselness filtering via the non-adaptive frame. It therefore
also produces a more accurate segmentation as can be
deducted from the comparison in Fig. 13. For comparison,
the multiscale Frangi vesselness filter is also computed via
summation over single-scale results and max-normalized.
Generally, we conclude from the experiments that the locally
adaptive frame approach better reduces background noise,
showing much less false positives in the final segmentation
results. This can be seen from the typical segmentation results
on relatively challenging patches in Fig. 15.

7.3 Experiments in SE(3)

We now show first results of the extension of coherence-
enhancingdiffusionvia invertible orientation scores (CEDOS
[35]) of 2D images to the 3D setting. Again, data are
processed according to Fig. 3. First, we construct an orien-
tation score according to (108), using the 3D cake-wavelets
(Fig. 11). For determining the gauge frame we use the first-
order structure tensor method in combination with Eq. (118)
in Appendix 1. In CEDOS we have Φ = Φt , as defined in
(111) and (112), which is a diffusion along the gauge frame.
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Fig. 15 Two challenging
patches (one close to the optic
disk and one far away from the
optic disk processed with the
same parameters). The gauge
frame approach typically
reduces false positives (red) on
the small vessels, and increases
false negatives (blue) at the
larger vessels. The top patch
shows a missing hole at the top
in the otherwise reasonable
segmentation by the expert
(Color figure online)

The diffusion in CEDOS can enhance elongated struc-
tures in 3D data while preserving the crossings as can be
seen in the two examples in Fig. 16. In these experiments
as well as in the example used in Figs. 8, 9, and 10, we
used the following3Dcake-wavelet parameters for construct-
ing the 3D invertible orientation scores: N0 = 42, sφ =
0.7, k = 2, N = 20, γ = 0.85, L = 16 evaluated on a
grid of 21 × 21 × 21 pixels, for details see [42]. The set-
tings for tangent vector estimation using the structure tensor
are sp = 1

2 (1.5)
2, s0 = 0, ρo = 1

2 (0.8)
2, and μ = 0.5.

We used ρp = 1
2 (2)

2 for the first dataset (Fig. 16 top), and
ρp = 1

2 (3.5)
2 for the second dataset (Fig. 16 bottom). For

the diffusion we used t = 2.5, D11 = D22 = 0.01, D33 =
1, D44 = D55 = D66 = 0.04, where the diffusion matrix is
given w.r.t. gauge frame {B1,B2,B3,B4,B5,B6}, and nor-
malized frame {μ−1A1, μ

−1A2, μ
−1A3,A4,A5,A6}.

The advantages of including the gauge frames w.r.t. the
non-adaptive frame can be better appreciated in Fig. 17.Here,
we borrow from the neuroimaging community the glyph
visualization, a standard technique for displaying distribu-
tions U : R

3 × S2 → R
+. In such visualizations every

voxel contains a spherical surface plot (a glyph) in which
the radial component is proportional to the output value of
the distribution at that orientation, and the colors indicate the
orientations. One can observe that diffusion along the gauge
frames include better adaptation for curvature. This is mainly
due to the angular part in the B3-direction, cf. Fig. 18, which
includes curvature, in contrast to A3-direction. The angular
part in B3 causes some additional angular blurring leading to
more isotropic glyphs.

8 Conclusion

Locally adaptive frames (‘gauge frames’) on images based
on the structure tensor or Hessian of the images are ill-posed
at the vicinity of complex structures. Therefore, we create

locally adaptive frames on distributions on SE(d), d = 2, 3
that extend the image domain (with positions and orienta-
tions). This gives rise to a whole family of local frames per
position, enabling us to deal with crossings and bifurcations.
In order to generalize gauge frames in the image domain
to gauge frames in SE(d), we have shown that exponential
curve fits gives rise to suitable gauge frames. We distin-
guished between exponential curve fits of the first order and
of the second order:

1. Along the first-order exponential curve fits, the first-order
variation of the data (on SE(d)) along the exponential
curve is locally minimal. The Euler–Lagrange equations
are solved by finding the eigenvector of the structure ten-
sor of the data, with smallest eigenvalue.

2. Along the second-order exponential curve fits, a second-
order variation of the data (on SE(d)) along the expo-
nential curve is locally minimal. The Euler–Lagrange
equations are solved by finding the eigenvector of the
Hessian of the data, with smallest eigenvalue.

In SE(2), the first-order approach is new, while the second-
order approach formalizes previous results. In SE(3), these
two approaches are presented for the first time. Here, it is
necessary to include a restriction to torsion-free exponential
curve fits in order to be both compatible with the null space
of the structure/Hessian tensors and the quotient structure of
R
3

� S2. We have presented an effective twofold algorithm
to compute such torsion-free exponential curve fits. Exper-
iments on artificial datasets show that even if the elongated
structures have torsion, the gauge frame is well adapted to
the local structure of the data.

Finally, we considered the application of a differential
invariant for enhancing retinal images. Experiments show
clear advantages over the classical vesselness filter [36]. Fur-
thermore, we also show clear advantages of including the
gauge frame over the standard left-invariant frame in SE(2).
Regarding 3D image applications, we managed to construct
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Fig. 16 Results of CEDOS
with and without the use of
gauge frames, on 3D artificial
datasets containing highly
curved structures. Gauge frames
are obtained, see Appendix 1,
via 1st order exponential curve
fits using the twofold algorithm
of Sect. 6.3.3. a 3D data. b Slice
of data. c Curve fits. d
Slice+Noise. e Gauge. f No
gauge. g 3D data. h Data slice. i
Curve fits. j Slice+Noise. k
Gauge. l No gauge
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Fig. 17 Glyph visualization
(see text) of the absolute value
of the diffused orientation
scores with and without the use
of gauge frames in the the
artificial dataset depicted in
Fig. 16 top. a Data. b Data &
Noise. c Enhanced using frame
{B1, . . . ,B6}. d Enhanced using
frame {A1, . . . ,A6}

and implement crossing-preserving coherence-enhancing
diffusion via invertible orientation scores (CEDOS), for the
first time. However, it has only been tested on artificial
datasets. Therefore, in future work we will study the use
of locally adaptive frames in real 3D medical imaging appli-
cations, e.g., in 3D MR angiography [43]. Furthermore, in
future work we will apply the theory of this work and focus
on the explicit algorithms, where we plan to release Mathe-
matica implementations of locally adaptive frames in SE(3).
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Appendix 1: Construction of the Locally Adaptive
Frame from an Exponential Curve Fit

Let γ̃ c
g (t) = g e

t
nd∑
i=1

ci Ai
be an exponential curve through g

that fits data Ũ : SE(d) → R at g ∈ SE(d) in Lie group
SE(d) of dimension nd = d(d + 1)/2. In Sect. 5 (d = 2),
and in Sect. 6 (d = 3), we provide theory and algorithms to
derive such curves. In this section we assume γ c

g (·) is given.
Recall from (17) that the (physical) velocity at time t of the

exponential curve γ̃ c
g equals (γ̃ c

g )′(t) = ∑nd
i=1 c

i Ai |g=γ̃ c
g (t).
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Recall that the spatial and, respectively, rotational compo-
nents of the velocity are stored in the vectors

c(1) = (c1, . . . , cd)T ∈ R
d ,

c(2) = (cd+1, . . . , cnd )T ∈ R
rd .

Let us write c =
(
c(1)

c(2)

)
∈ R

nd , with nd = d + rd .

Akin to the case d = 2 discussed in the introduction, we
define the Gauge frame viaB := (Rc)TM−1

μ A, but nowwith

B = (B1, . . . ,Bnd )
T , A = (A1, . . . ,And )

T ,

Mμ =
(

μId 0
0 Ird

)
, and Rc = R2R1 ∈ SO(nd). (118)

For explicit formulae of the left-invariant vector fields in the
d-dimensional case we refer to [31].

Now R1 is the counterclockwise rotation that rotates the

spatial reference axis

(
a
0

)
, recall our convention (2), onto

(
μ‖c(1)‖a

c(2)

)
strictly within the 2D plane spanned by these

two vectors. Rotation R2 is the counterclockwise rotation

that rotates

(
μ‖c(1)‖a

c(2)

)
onto

(
μc(1)

c(2)

)
strictly within the

2D plane spanned by these two vectors. As a result one has

(
a
0

)
R1�→

(
μ‖c(1)‖a

c(2)

)
R2�→

(
μc(1)

c(2)

)
= Mμc

⇔ c = M−1
μ Rc

(
a
0

)
. (119)

In particular we have that the preferred spatial direction(
a
0

)
· A is mapped onto

(
a
0

)
· B = c · A.

The next theorem shows us that our choice of assigning
an entire gauge frame to a single exponential curve fit is the
right one for our applications.

Theorem 7 (Construction of the gauge frame) Let c(g)
denote the local tangent components of exponential curve
fit t �→ γ̃

c(g)
g (t) at g = (x,R) ∈ SE(d) in the data given by

Ũ (x,R) = U (x,Ra). Consider the mapping of the frame
of left-invariant vector fields A∣∣g to the locally adaptive
frame:

B∣∣g := (Rc(g))TM−1
μ A∣∣g , (120)

with Rc = R2R1 ∈ SO(nd), with subsequent counter-
clockwise planar rotations R1,R2 given by (119). Then the
mapping Ag �→ Bg has the following properties:

– The main spatial tangent direction (Lg)∗
(
a
0

)
· A∣∣e is

mapped to exponential curve fit direction cT (g) · A∣∣g.

– Spatial left-invariant vector fields that areGμ-orthogonal
to this main spatial direction stay in the spatial part of
the tangent space Tg(SE(d)) under rotation Rc and they
are invariant up to normalization under the action (120)
if and only if the exponential curve fit is horizontal.

Proof Regarding the first property we note that

(Lg)∗
(
a
0

)
· A∣∣e =

(
a
0

)
· A∣∣g

as left-invariant vector fields are obtained by push-forward of
the left multiplication. Furthermore, by Eqs. (120) and (119)
we have

(
a
0

)
· B = M−1

μ Rc
(
a
0

)
· A = c · A.

Regarding the second property, we note that if b · a = 0 ⇒

Rc
(
b
0

)
= R2R1

(
b
0

)
= R2

(
b
0

)

and γ̃ c
g is horizontal iff c(1)

‖c(1)‖ = a in which case the planar

rotationR2 reduces to the identity andR2R1

(
b
0

)
=
(
b
0

)T

and only spatial normalization by μ−1 is applied. ��
Remark 16 For d = 2 and a = (1, 0)T the above theorem
can be observed in Fig. 5, where main spatial directionA1 =
cos θ ∂x + sin θ ∂y is mapped onto B1 = c ·A and whereA2

is mapped onto B2 = μ−1(− sin χA1 + cosχA2).

Remark 17 For d = 3 and a = (0, 0, 1)T the above theorem
canbe observed inFig. 18,wheremain spatial directionA3 =
n · ∇R3 is mapped onto B3 = c · A, and where A1 and A2

are mapped to the strictly spatial generators B1 and B2. For
further details see [43].

Appendix 2: The Geometry of Neighboring Expo-
nential Curves

In this appendix we provide some differential geometry
underlying the family of neighboring exponential curves.

First we prove Lemma 3 on the construction of the family
{γ̃ c

h,g} of neighboring exponential curves in SE(3), recall
Fig. 7, and then we provide an alternative coordinate-free
definition of γ̃ c

h,g in addition to our Definition 5 .
For the proof of Lemma 3 we will just show equalities

(86) as from this equality it directly follows by differentiation
w.r.t. t that the exponential curves γ̃ c

h,g(·) = (xh(·),Rh(·))
and γ̃ c

g (·) = (xg(·),Rg(·)) have the same spatial and angular
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Fig. 18 Visualization of the mapping of left-invariant frame
{A1, . . . ,A6}|g onto locally adaptive spatial frame {B1, . . . ,B6}|g
and γ̃ c

g (·) a non-horizontal and torsion-free exponential curve passing

trough g = e = (0, I ). The top row indicates the spatial part in R
3,

whereas the bottom row indicates the angular part in S2. The top black
curve is the spatial projection of γ̃ c

g (·), and the bottom black curve is

the angular projection of the exponential curve. After application ofRT
2

the exponential curve is horizontal w.r.t. the frame { Âi }, subsequently
RT
1 leaves spatial generators orthogonal to a horizontal curve invariant,

so that Â1 = B1 and Â2 = B2 are strictly spatial, as is in accordance
with Theorem 7. The angular part of B3 is shown via the curvature at
the blue arrow. The spatial part of B4 and B5 is depicted in the center
of the ball (Color figure online)

velocity. For the spatial velocities it is obvious, for the angular
velocities, we note that rotational velocity matrices Ωh and
Ωg are indeed equal:

Rh(t) = Rg(t)R−1R′ ⇒
Ωh := d

dt
Rh(t)

∣∣∣∣
t=0

(Rh(0))
−1

= d

dt
Rg(t)

∣∣∣∣
t=0

(Rg(0))
−1 = Ωg,

where we note that Rg(t) = etΩgRg(0) = etΩgR, and
Rh(t) = etΩhRh(0) = etΩhR′.

Regarding the remaining derivation of (86), we note that
it is equivalent to

γ̃ c
h,g(t) = h (0, (R′)TR) (g−1γ̃ c

g (t)) (0, (R′)TR)−1, (121)

by group product (4). So we focus on the derivation of this
identity. Let us setQ := (R′)TR. Now relying on the matrix
representation (6) andmatrix exponential, we deduce the fol-
lowing identity for h = e = (0, I ):

γ̃ c
e,g(t) = γ̃

(
Q 0
0 Q

)
c

e (t) = (0,Q) γ̃ c
e (t) (0,Q−1), (122)

which holds for all Q ∈ SO(3), in particular for Q =
(R′)TR. Consequently, we have

γ̃ c
h,g(t) = hγ̃ c

e,g(t) = h (0,Q) g−1γ̃ c
g (t) (0,Q−1),

from which the result follows. ��
WeconcludeFromLemma3 that ourDefinition5 is indeed

the right definition for our purposes, but as it is a definition
expressed in left-invariant coordinates it also leaves the ques-
tion what the underlying coordinate-free unitary map from
Tg(SE(3)) to Th(SE(3)) actually is. Next we answer this
question where we keep Eq. (121) in mind.

Definition 6 Let us define the unitary operator Uh,g :
Tg(SE(3)) → Th(SE(3)) by

Uh,g := (Lh)∗R̃h−1g(Lg−1)∗,

for each pair g = (x,R), h = (x′,R′) ∈ SE(3).

Remark 18 From (87) it follows that the unitary correspon-
dence between Tγ̃ c

g (t) and Tγ̃ c
h,g(t)

is preserved for all t ∈ R.

Definition 7 The coordinate-free definition of γ̃ c
h,g is that it

is the unique exponential curve passing through h at t = 0
with

123



J Math Imaging Vis (2016) 56:367–402 397

(γ̃ c
h,g)

′(0) = Uh,g
(
(γ̃ c

g )′(0)
)

.

Remark 19 The previous definition (Definition 5) follows
from the coordinate-free definition (Definition 7). This can
be shown via identity (121) which can be rewritten as

γ̃ c
h,g(t) = Lh ◦ conj(0,Q) ◦ (Lg−1)γ̃ c

g (t), (123)

which indeed yields

(Lh ◦ conj(0,Q) ◦ (Lg−1))∗ = (Lh)∗ ◦ Ad(0,Q) ◦ (Lg−1)∗

= (Lh)∗
(
Q 0
0 Q

)
(Lg−1)∗

= Uh,g,

again with Q = (R′)TR, conj(g)h = ghg−1, and Ad(g) =
(conj(g))∗ is the adjoint representation [44].

Appendix 3: Exponential Curve Fits on SE(3) of the
Second Order via Factorization

Instead of applying a second-order exponential curvefit (106)
containing a single exponential, one can factorize exponen-
tials, and consider the following optimization:

c∗(g) = arg min
c∈R6,‖c‖μ=1,c6=0∣∣∣ d2

dt2
Ṽ (g et (c

1A1+c2A2+c3A3)et (c
4A4+c5A5))

∣∣∣
t=0

∣∣∣ . (124)

As shown in Theorem 8 the Euler–Lagrange equations are
solved by spectral decomposition of the symmetric Hessian
given by

H
s := H

s
(Ũ ) =

⎛
⎜⎝
A1A1Ṽ . . . A1A6Ṽ

...
. . .

...

A1A6Ṽ . . . A6A6Ṽ

⎞
⎟⎠ , (125)

with Ṽ = G̃s ∗ Ũ . This Hessian differs from the consistent
Hessian in Appendix 2.

Theorem 8 (Second-Order Fit via Factorization) Let g ∈
SE(3) be such that Hessian matrix M−1

μ (H
s
(g))M−1

μ has
two eigenvalues with the same sign. Then the normalized
eigenvector Mμc∗(g) with smallest eigenvalue provides the
solution c∗(g) of the following optimization problem (124).

Proof Define F1 := c(1) · A(1) ∈ Te(SE(3)) with A(1) :=
(A1, A2, A3)

T . Define F2 := c(2) · A(2) ∈ Te(SE(3))
with A(2) := (A4, A5, A6)

T . Define vector fields F1|g :=
(Lg)∗F1, F2|g := (Lg)∗F2. Then Then

d2

dt2
Ṽ (g et F1et F2)

∣∣∣∣
t=0

= lim
h→0

Ṽ(gehF1ehF2) − 2Ṽ(g) + Ṽ(ge−hF1e−hF2)

h2

= F1F1Ṽ (g) + F2F2Ṽ (g) + 2F1F2Ṽ (g)

= (c(g))TH
s
(g)c(g).

This follows by direct computation and the formula

Ṽ (qehFk ) = Ṽ (q) + hFk Ṽ (q) + h2

2
F2
k Ṽ (q) + O(h3),

applied for (q = gehF1, k = 2) and (q = g, k = 1).
Therefore, we can express the optimization functional as

E(c) :=
∣∣∣∣ d

2

dt2
Ṽ (get (c

1A1+c2A2+c3A3)et (c
4A4+c5A5))

∣∣∣∣
t=0

∣∣∣∣
=
∣∣∣cTHs

(g)c
∣∣∣ , (126)

with again boundary condition ϕ(c) = cTM2
μc = 1, from

which the result follows via Euler–Lagrange ∇E = λ∇ϕ

and left multiplication withM−1
μ . ��

This approach can again be decomposed in the twofold
approach. Effectively, this means that in Sect. 6.4.2 the upper
triangle of the Hessian Hs is replaced by the lower triangle,
whereas the lower triangle is maintained. This approach per-
forms well in practice; see, e.g., Fig. 9 where the results of
the exponential curve fits of second order are similar to expo-
nential curve fits of first order.

Appendix 4: The Hessian Induced by the Left
Cartan Connection

In this section we will provide a formal differential geomet-
rical underpinning for our choice of Hessian matrix

H(Ũ ) = [A j (Ai Ũ )], (127)

where i denotes the row index and j the column index
on SE(d), recall the case d = 2 in (62) and recall the
case d = 3 in (107). Recall from Theorems 2, 3 and
6 that this Hessian naturally appears via direct sums or
products in our exponential curve fits of second order
on SE(d).

Furthermore, we relate our exponential curve fit theory to
the theory in [44], where the same idea of second-order fits of
auto-parallel curves to a given smooth function Ũ : M → R

in a Riemannian manifold is visible in [44, Eq. 3.3.50]. Here
we stress that in the book of Jost [44, Eq. 3.3.50] this is done
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in the very different context of the torsion-free Levi-Civita
connections, instead of the left Cartan connectionwhich does
have non-vanishing torsion.

Let us start with the coordinate-free definition of the
Hessian inducedby agiven a connection∇∗ on the co-tangent
bundle.

Definition 8 (Coordinate-free definition Hessian) On a Rie-
mannian manifold (M,G) with connection ∇∗ on T ∗(M),
the Hessian of smooth function Ũ : M → R is defined
coordinate independently [44, Def. 3.3.5] by ∇∗dŨ .

In coordinate-free form one has (cf. [44, Eq. 3.3.50])

∇∗dŨ (X p, X p) = d2

dt2
Ũ (γ (t))

∣∣∣∣
t=0

(128)

for the auto-parallel (i.e., ∇γ̇ γ̇ = 0) curve γ (t) with tangent
γ ′(0) = X p passing through c(0) = p at time zero.

Remark 20 In many books on differential geometry ∇∗ is
again denoted by ∇ (we also did this in our previous works
[25,28]). In this appendix, however, we distinguish between
the connection ∇ on the tangent bundle and its adjoint con-
nection ∇∗ on the co-tangent bundle T ∗(SE(d)).

Let us recall that the structure constants of the Lie algebra
are given by

[Ai ,A j ] = AiA j − A jAi =
nd∑
k=1

cki jAk . (129)

As shown in previouswork [28] the left Cartan connection4 ∇
on M = (SE(d),Gμ) is the (metric compatible) connection
whose Christoffel symbols, expressed in the left-invariant
moving (co)frame of reference, are equal to the structure
constants of the Lie algebra:

Γ k
i j = ckji = −cki j ∈ {−1, 0, 1}.

More precisely, this means that if we compute the covariant
derivative of a vector field Y = ∑nd

k=1 y
kAk (i.e., a section

in T (SE(d)) along the tangent ˙̃γ (t) = ∑nd
i=1

˙̃γ i (t) Ai |γ̃ (t)
of some smooth curve t �→ γ̃ (t) in SE(d). This is done as
follows

∇ ˙̃γ Y =
nd∑
k=1

⎛
⎝ẏk −

nd∑
i, j=1

cki j
˙̃γ i y j

⎞
⎠Ak, (130)

where we follow the notation in Jost’s book [44, p. 108]
and define ẏk(t) := d

dt y
k(γ̃ (t)). Byduality this induces the

4 Also known as minus Cartan connection.

following (adjoint) covariant derivative of a covector field λ

(i.e., a section in T ∗(SE(d))):

∇∗̇
γ̃
λ =

nd∑
i=1

⎛
⎝λ̇i +

nd∑
k, j=1

cki jλk
˙̃γ j

⎞
⎠ωi , (131)

with λ̇i (t) = d
dt λi (γ̃ (t)). Then by antisymmetry of the struc-

ture constants it directly follows (see, e.g., [25]) that the
auto-parallel curves are the exponential curves:

∇ ˙̃γ ˙̃γ = 0 and ˙̃γ (0) = c and γ̃ (0) = g ⇔ γ̃ = γ̃ c
g . (132)

Remark 21 Due to torsion of the left Cartan connection, the
auto-parallel curves do not coincide with the geodesics w.r.t.
metric tensor Gξ . This is in contrast to the Levi–Cevita con-
nection (see, for example, Jost’s book [44, ch:3.3, ch:4])
where auto-parallels are precisely the geodesics (see [44,
ch:4.1]).

Intuitively speaking this means that in the curved geome-
try of the left Cartan connection on SE(d) (that is present in
the domain of an orientation score, see Fig. 3) the ‘straight
curves’ (i.e., the auto-parallel curves) do not coincide with
the ‘shortest curves’ (i.e., the Riemannian distance minimiz-
ers).

The left Cartan connection is the consistent connection on
SE(d) in the sense that auto-parallel curves are the expo-
nential curves studied in this article. Therefore, the consistent
Hessian form on SE(d) is induced by the left Cartan con-
nection. Expressing it in the left-invariant frame yields

∇∗dŨ (Ai ,A j )
def= (∇∗

Ai
dŨ )(A j )

(131)=
nd∑
j ′=1

(AiA j ′Ũ +
nd∑
k=1

ckj ′iAkŨ ) ω j ′(A j )

(11)= (AiA j Ũ +
nd∑
k=1

ckjiAkŨ )

(129)= (Ai (A j Ũ ) + (A jAi − AiA j )Ũ )

= (A j (Ai Ũ ),

(133)

where i denotes the row index and j the column index. So
we conclude from this computation that (127) is the correct
consistent Hessian on SE(d) for our purposes.

Remark 22 The left Cartan connection has torsion and is not
the same as the standard torsion-free Cartan–Schouten con-
nection on Lie groups, which have also many applications in
image analysis an statistics on Lie groups, cf. [55,56]. Recall
that within the orientation score framework, right invariance
is undesirable.
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Appendix 5: Table of Notations

See Table 1.

Table 1 Table of notations, with five panels. In (a) we provide notations
regarding input data and the spaces on the domain of this data, In (b) we
provide notations for the tools from differential geometry. In (c) we pro-
vide notation regarding exponential curves, where we split between the

general case d ≥ 2 (part I) and specific notation for the case d = 3 (part
II). In (d) we provide notations related to image processing applications
via invertible orientation scores. In (e) we provide notations regarding
Cartan connections

Symbol Explanation Reference

(a) Spaces and input data

SE(d) The group of rotations and translations on R
d Sections 1, 2.1, and (4)

R
d

� Sd−1 Space of positions & orientations as a group quotient in SE(d) (3), and Sect. 6.1

Ũ Input data Ũ : SE(d) → R (1), and Section 2.1

U Input data U : R
d

� Sd−1 → R (1), (3), and Sect. 6.1

Ṽ Gaussian smoothed input data Ṽ = G̃s ∗ Ũ (26), and (27)

(b) Tools from differential geometry

Ai |g Left-invariant vector field Ai restricted to g ∈ SE(d) Section 2.3, and (10), (9)

Bi |g Gauge vector field Bi restricted to g ∈ SE(d) Section 3, and (36)

Gμ

∣∣
g Metric tensor Gμ restricted to g ∈ SE(d) Section 2.5, and (23)

‖ · ‖μ μ-norm on R
nd , with nd = dim(SE(d)) = d(d+1)

2 Section 2.5, and (24)

Mμ MatrixMμ :=
(

μId 0
0 Ird

)
is used in definition of the μ-norm

‖ · ‖μ

Section 2.5, and (24)

dŨ (g) Derivative of Ũ at g which is a covector in T ∗
g (SE(d)) (12)

∇Ũ (g) Gradient of Ũ at g which is a vector in Tg(SE(d)) Section 2.7 and (28)

χ Deviation from horizontality angle (34)

L Left-regular representation given by LgŨ (h) = Ũ (g−1h) (7)

R Right-regular representation given by RgŨ (h) = Ũ (h g) (7)

L Left multiplication Lgh = gh (8)

(c) Part I: Exponential curves and exponential curve fits on SE(d)

γ̃ c
g (·) Exponential curve starting from g with velocity c = (c(1), c(2)) (16), and Section 2.4

γ̃ c
h,g(·) Neighboring exponential curve starting at h ∈ SE(d) with the

same velocity as curve γ̃ c
g

(51) and Section 5.1, (84) and Section 6.2

γ̃
c∗(g)
g (·) Exponential curve fit to data Ũ at g ∈ SE(d) (16), and Theorem 1,2,3,4,5,6, Fig. 3

c∗(g) Local tangent vector to exponential curve fit γ̃ c∗
g to data Ũ (54), (63), (64), (88), and (106)

R̃h−1g Rotation in Th(SE(d)) arising in the construction of γ̃ c
h,g (52), and (85)

Ss,ρ Structure tensor Ss,ρ := Ss,ρ(Ũ ) of input data Ũ (9), (89), and (97)

Hs Gaussian Hessian Hs := Hs(Ũ ) = H(Ṽ ) of input data Ũ (62), and (107)

(c) Part II: Exponential curve fits on SE(3) with projections in R
3

� S2

Ra,φ Counterclockwise 3D rotation about axis a by angle φ Text below (31)

Rn Any 3D rotation that maps a = (0, 0, 1)T onto n ∈ S2 (31), and Theorem 5

hα Element hα = (0,Ra,α) of the subgroup ≡ {0} × SO(2) (76)

� Symbol denoting action of SE(3) onto R
3

� S2 (74), and Section 6.1

Zα Rotation matrix in SO(6) that arises in ∇Ũ if g �→ ghα (80)

N Null space of the structure tensor Ss,ρ (90)

γ ∗
(y,n)(·) Projected exponential curve fit to data U at (y,n) ∈ R

3
� S2 (9), and (98)

gnew Location in SE(3) for horizontal exponential curve fit (101)
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Table 1 continued

Symbol Explanation Reference

(d) Applications

f Input gray-scale image f : R
d → R (108), and (110)

Wψ f Orientation score of gray-scale image f via cake-wavelet ψ (108), and Fig. 3, 10, 11

Φt Non-linear diffusion operator (diagonal diffusion in gauge
frame)

(112)

W̃ (g, t) Scale space representation of Ũ at g ∈ SE(d) and scale t > 0 (112)

Φ Vesselness operator (113)

(e) Appendix

∇ ˙̃γ Y Covariant derivative of vector field Y along ˙̃γ w.r.t. Left Cartan
connection ∇ on T (SE(d))

(130), and Appendix 4

∇∗̇
γ̃
ω Covariant derivative of covector field ω along ˙̃γ w.r.t. the

adjoint Left Cartan connection ∇∗ on T ∗(SE(d))

(131), and Appendix 4

∇∗dŨ Coordinate-free definition of the Hessian (128), (133), and Appendix 4
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