332 research outputs found

    Comment on "Clouds and the Faint Young Sun Paradox" by Goldblatt and Zahnle (2011)

    Get PDF
    Goldblatt and Zahnle (2011) raise a number of issues related to the possibility that cirrus clouds can provide a solution to the faint young sun paradox. Here, we argue that: (1) climates having a lower than present mean surface temperature cannot be discarded as solutions to the faint young sun paradox, (2) the detrainment from deep convective clouds in the tropics is a well-established physical mechanism for the formation of high clouds that have a positive radiative forcing (even if the possible role of these clouds as a negative climate feedback remains controversial) and (3) even if some cloud properties are not mutually consistent with observations in radiative transfer parameterizations, the most relevant consistency (for the purpose of hypothesis testing) is with observations of the cloud radiative forcing. Therefore, we maintain that cirrus clouds, as observed in the current climate and covering a large region of the tropics, can provide a solution to the faint young sun paradox, or at least ease the amount of CO<sub>2</sub> or other greenhouse substances needed to provide temperatures above freezing during the Archean

    Reply to: 'Tropical cirrus and water vapor: an effective Earth infrared iris feedback?'

    Get PDF
    In assessing the iris effect suggested by Lindzen et al. (2001), Fu et al. (2002) found that the response of high-level clouds to the sea surface temperature had an effect of reducing the climate sensitivity to external radiative forcing, but the effect was not as strong as LCH found. The approach of FBH to specifying longwave emission and cloud albedos appears to be inappropriate, and the derived cloud optical properties may not have real physical meaning. The cloud albedo calculated by FBH is too large for cirrus clouds and too small for boundary layer clouds, which underestimates the iris effect

    Excerpts from the paper: Research Status and Recommendation from the Alaska Workshop on Gravity Waves and Turbulence in the Middle Atmosphere, part 1.3A

    Get PDF
    Internal gravity waves are disturbances whose intrinsic frequencies k(c - u) are smaller than the Brunt-Vaisala frequency (N). Their importance arises because: they are the major components of the total flow and temperature variability fields of the mesosphere (i.e., shears and lapse rates) and hence constitute the likely sources of turbulence; and they are associated with fluxes of momentum that communicate stresses over large distances. For example, gravity waves exert a drag on the flow in the upper mesosphere. However, in order for gravity waves to exert a net drag on the atmosphere, they must be attenuated. There are two general types of processes that seek to attenuate gravity waves: dissipation and saturation. Dissipation is any process that is effective independent of the wave amplitude, while saturation occurs when certain wave amplitude conditions are met. Radiative damping is an example of dissipation, while convective overturning is an example of saturation. The two processes are not mutually exclusive

    Study of the relationship between solar activity and terrestrial weather

    Get PDF
    Evidence for some connection between weather and solar related phenomena is presented. Historical data of world wide temperature variations with relationship to change in solar luminosity are examined. Several test methods for estimating the statistical significance of such phenomena are discussed in detail

    Surface-pressure Tides Simulated by WACCM-1 and CMIP3 / IPCC Climate Models

    Full text link

    Global Environmental Change: What Can Health Care Providers and the Environmental Health Community Do About It Now?

    Get PDF
    The debate about whether global environmental change is real is now over; in its wake is the realization that it is happening more rapidly than predicted. These changes constitute a profound challenge to human health, both as a direct threat and as a promoter of other risks. We call on health care providers to inform themselves about these issues and to become agents of change in their communities. It is our responsibility as clinicians to educate patients and their communities on the connections between regressive policies, unsustainable behaviors, global environmental changes, and threats to health and security. We call on professional organizations to assist in educating their members about these issues, in helping clinicians practice behavior change with their patients, and in adding their voices to this issue in our statehouses and Congress. We call for the development of carbon- and other environmental-labeling of consumer products so individuals can make informed choices; we also call for the rapid implementation of policies that provide tangible economic incentives for choosing environmentally sustainable products and services. We urge the environmental health community to take up the challenge of developing a global environmental health index that will incorporate human health into available “planetary health” metrics and that can be used as a policy tool to evaluate the impact of interventions and document spatial and temporal shifts in the healthfulness of local areas. Finally, we urge our political, business, public health, and academic leaders to heed these environmental warnings and quickly develop regulatory and policy solutions so that the health of populations and the integrity of their environments will be ensured for future generations

    Precipitating Condensation Clouds in Substellar Atmospheres

    Full text link
    We present a method to calculate vertical profiles of particle size distributions in condensation clouds of giant planets and brown dwarfs. The method assumes a balance between turbulent diffusion and sedimentation in horizontally uniform cloud decks. Calculations for the Jovian ammonia cloud are compared with results from previous methods. An adjustable parameter describing the efficiency of sedimentation allows the new model to span the range of predictions made by previous models. Calculations for the Jovian ammonia cloud are consistent with observations. Example calculations are provided for water, silicate, and iron clouds on brown dwarfs and on a cool extrasolar giant planet. We find that precipitating cloud decks naturally account for the characteristic trends seen in the spectra and colors of L- and T-type ultracool dwarfs.Comment: 33 pages including 7 figures; AASTex; Accepted for publication in Astrophysical Journal, tentatively scheduled for v556 n1 July 20, 2001 . Plotting error in Fig 5 corrected; slight modification to Fig 5 dicussion in tex

    An Analysis of Tropical Transport: Influence of the Quasi-biennial Oscillation

    Get PDF
    An analysis of over 4 years of Upper Atmosphere Research Satellite (UARS) measurements of CH4, HF, O3, and zonal wind are used to study the influence of the quasi-biennial oscillation (QBO) on constituent transport in the tropics. At the equator, spectral analysis of the Halogen Occultation Experiment (HALOE) and Microwave Limb Sounder (MLS) observations reveals QBO signals in constituent and temperature fields at altitudes between 20 and 45 km. Between these altitudes, the location of the maximum QBO amplitude roughly corresponds with the location of the largest vertical gradient in the constituent field. Thus, at 40 km where CH4 and HF have strong vertical gradients, QBO signals are correspondingly large, while at lower altitudes where the vertical gradients are weak, so are the QBO variations. Similarly, ozone, which is largely under dynamical control below 30 km in the tropics, has a strong QBO signal in the region of sharp vertical gradients (∌28 km) below the ozone peak. Above 35 km, annual and semi-annual variations are also found to be important components of the variability of long-lived tracers. Therefore, above 30 km, the variability in CH4 and HF at the equator is represented by a combination of semiannual, annual, and QBO timescales. A one-dimensional vertical transport model is used to further investigate the influence of annual and QBO variations on tropical constituent fields. QBO-induced vertical motions are calculated from observed high resolution Doppler imager (HRDI) zonal winds at the equator, while the mean annually varying tropical ascent rate is obtained from the Goddard two-dimensional model. Model simulations of tropical CH4 confirm the importance of both the annual cycle and the QBO in describing the HALOE CH4 observations above 30 km. Estimates of the tropical ascent rate and the variation due to the annual cycle and QBO are also discussed
    • 

    corecore