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The purpose of this  note is to describe the simple ex- 
tension of a popular  method of solving second-order 
ordinary differential equations  with two end-point  bound- 
ary conditions to  nth order  ordinary differential equations 
and to  partial differential equations that  are second order 
in one direction. The orginal method is simply a version 
of Gaussian elimination;  and the extension (to  be de- 
scribed) has, we have discovered, been published, sliihtly 
differently, before. We feel, however, that  the  present 
note will be of value, since the extension has proven  very 
useful to  both of us, and is seldom  used among  numerical 
analysts  and meteorologists. 

We begin by reviewing second-order ordinary differ- 
ential  equations. Consider 

8x is the grid interval used in finite-difference approxima- 
tion to  equation (1), 

and 
A b f o + B b f , = D b ,  

A l . f N - l + B l f N = D l  

where N is the level number corresponding to x= 1. The 
solution of equation (2) (following Richtmyer, 1957) goes 
as follows: 

f n = a n   j n + l + P n  (3) 

where an and )Bn are newly introduced variables. Then 

j n - l = a n - I   j n S 8 n - 1 .  (4) 

Substituting  equation (4) into (2) we obtain 

and 

Thus, knowing ao, bo we may readily  obtain all a,'s and 
P i s .  From  the lower boundary condition 

dx2 %+g(x) g+h(x ) j=r ( z )  

(7) where 
and 

df+alj=bl a t  x = o  dx 

and Equation (3) may  be used to obtain j a t  all n's, provided 
conditionwe  have 

(9) 

(10) 

we  know j N .  With  the  upper boundary 

A t j N - - 1 + B t f N = D t .  
We also have 

f h " l = ~ N - l ~ N + ~ N - l ~  
I n  finite differences this becomes 

A n   j n - l + B n j n + C n   j n + l = D n ,  (2) 

n = l , 2 , 3 , .  . ., N - 1 ,  
These may  be solved to obtain 

where 

Thus  our solution is formally complete. The procedure is 
valid provided that 

A n a n - l + B n f O  

for all n. A sufficient condition for  this to be so is that 
n 

and 
2 

6X<- -G and 

where Q=max Ig(x)l; H* and H* are positive constants. Dn=r(x,,). 
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These  are, however, by no  means  necessary  conditions. 
The authors  have  yet  to find an inhomogeneous,  well- 
posed  problem for which the method fails. In particular, 
many  wave-type problems where h>O have been solved. 
It should be  added that when h=constant  and g=O, 
beyond a  certain  point  in the domain,  the  requirement 
of two end points  is  readily extended to include a  radiation 
condition. Let h=X2 for x>xl. If we  wish our solution 
to behave as e*'' beyond xl, then we simply impose 

df/aX=iXf 

a t  some x>xl as a  boundary  condition. Such an application 
may  be  found  in  Lindzen (1968). Also, when h= - Xz the 
method has no difficulty in  separating growing from 
decaying  solutions  (Carrier  and  Pearson, 1968). 

The extension of the above  method  to nth order  ordinary 
differential  equations is straightforward.  Consider 

For simplicity let n be even. Also, let  there  be  appropriate 
boundary  conditions a t  x=O and 1. What is  meant  by 
appropriate will become evident. Let 

dn-2 f f l = F  

Equation (13a) may  be rewritten 

where  m=n/2.  Equation (12) becomes 

where f,,,=f. Equations (13b) and (14) may  be  rewritten 

d2 d 
dx2 - f+cA(x) f+%(x)f=r(x) 

where 

and 

d = O  y y o  0 0 0 f ;  ] 
. . . .  
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l . . . .  J 
f;l 

. . . .  

r=[oj 
Instead of equation (2)) we  now write 

where equation (16) is the finitedifference  approximation 
to (15); 

1 1 A,=- I" &(x), 
(6X)Z 262 

n 

1 1 c,=- I+- w4(s); 
(6x )2  262 

and  instead of equation (3)) we write 

where a, is now an (n/2) X (nl2)  matrix  and fjn is as an 
n-dimensional vector. It is easily shown that 

Thus, if we obtain at, and Bo from our  boundary  condition 
a t  z=O, we may  readily  obtain  all the other a,'s and 
p i s .  At each step, however, we must  invert  an (742) X (42) 
matrix. For n58, this is a trivial matter.  Even for n'2180, 
share  routines (involving Gaussian  elimination) are re- 
markably effective. As before, the value of f, is obtained 
from the upper  boundary  condition  together  with the 
equation 

fnr"=a"lfN+8N-1* 

It should be  added that many high-order differentid 
equations  result from combining several lower order  dif- 
ferentials.  Thus, a set of second-order equations may pre- 
sent themselves in the course of analysis-prior to  the 
derivation of the single nth order  equation. 

Although we are  not  normally  interested in  180th order 
ordinary  differential  equations, the limit becomes quite 
meaningful when we come to partial  differential  equations. 
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Consider an equation of the form 

-a2f, ax2 L q , z [ . f l = ? + / , 4  (20) 

where J q , =  is  a  differential  operator of arbitrary order  in 
y-but of no greater than first order in x. The finite- 
difference form of equation (20) is also given by (16) where, 
however, f, is now the  set of the values off at  the nth level 
in x at all the grid points in y. The boundary conditions 
at  x=O, 1 (or any  other two points) are introduced as 
before; the  boundary  conditions at  y=O, 1 are included 
in A,, B,, C,, D,. The present  method  appears to  be 
genuinely insensitive to  equation (20)’s type.  Several 
problems with mixed hyperbolic-elliptic equations  have 
been  solved with no difficulty. It is our impression that 
whenever equation (20) together  with its boundary condi- 
tions has  a continuous solution the  present method will 
determine it. I n  this  respect,  our  method  appears  superior 
to  iterative procedures which usually fail for  operators 
that  are  not purely elliptic. Our  method is similar to those 
described by Cornock  (1954), Karlqvist (1952), and 
Schechter (1960) in connection with  the  solution of par- 
ticular  partial differential equations. While the application 
of the method to high-order ordinary differential equations 
is obvious, we are  not  familiar  with earlier references in 
this connection. The  disadvantage of our  method (minor 
for our purposes) is that it requires the inversion of N 
(where N= the number of levels) J X  J matrices (where J 
is either the  number of grid points in  the y-direction, or- 
in the case of ordinary differential equations-one-half 
the order of the differential equation),  and the  storage of 
N J X  J matrices  and N Jdimensional vectors for use in 
the backward sweep. In  an elegant extension of the method 
described here, Schechter (1960)  reduced the solution of 
the system of equations (16) to  the inversion of a siqgle 
J X  J matrix. Schechter’s method  has, however, a serious 
disadva-: tage. As the number of levels increases, the condi- 
tion  number of the  matrix  to  be  inverted increases. If the 
equation  to  be  inverted  is  hyperbolic over a significant 
part of its domain, the rise in condition  number  can  be 
astronomical-the matrix becoming uninvertible  for 
practical purposes. Thus, Schechter’s  method is type- 
sensitive. 

The method described in  this  paper  has been  success- 
fully used by  the  authors  to investigate the propagation 
of planetary scale equatorial waves through  shear zones 
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with and  without  critical levels, the propagation of 
internal  gravity waves with arbitrary distributions of 
temperature, viscosity, conductivity,  anisotropic ion drag, 
Newtonian cooling and  thermal  excitation,  and  the non- 
linear flows in  the  boundary  layer of a  vortex. The method 
has also been  used by  Matsuno (personal communication) 
to  study  the propagation of internal  Rossby waves in  an 
atmosphere  with an  arbitrary distribution of zonal wind 
with latitude  and  altitude.  The  results of all these calcu- 
lations will be published separately. In  each case, how- 
ever, all the matrices to be inverted were of low condition 
number,  and  accurately  and easily inverted using stand- 
ard “share”  routines. 

As a final comment, we should state  that  many equations 
of the form of equation (20)  arq  more efficiently solved by 
relaxation  methods. Moreover,  when equation (20)’s x and 
y dependence is  separable,  a common method of solution 
is to  Fourier  transform  out  one of the dependencies and 
use the present  method for solving the resulting second- 
order  ordinary differential equations. The  virtue of the 
present  method is not  that it is the most efficient method, 
but  that it appears  to  be generally reliable. 
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