826 research outputs found

    Characterization of immune response to neurofilament light in experimental autoimmune encephalomyelitis

    Get PDF
    PMCID: PMC3856490This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.PMCID: PMC385649

    Likelihood-ratio ranking of gravitational-wave candidates in a non-Gaussian background

    Get PDF
    We describe a general approach to detection of transient gravitational-wave signals in the presence of non-Gaussian background noise. We prove that under quite general conditions, the ratio of the likelihood of observed data to contain a signal to the likelihood of it being a noise fluctuation provides optimal ranking for the candidate events found in an experiment. The likelihood-ratio ranking allows us to combine different kinds of data into a single analysis. We apply the general framework to the problem of unifying the results of independent experiments and the problem of accounting for non-Gaussian artifacts in the searches for gravitational waves from compact binary coalescence in LIGO data. We show analytically and confirm through simulations that in both cases the likelihood ratio statistic results in an improved analysis.Comment: 10 pages, 6 figure

    Ground Water in the Kentucky River Basin

    Get PDF
    Most private wells in the Kentucky River Basin are in unconfined or semi-confined bedrock aquifers. Within these aquifers, high-yield zones are irregularly distributed. The most productive wells are drilled into fractured bedrock and alluvium along the Kentucky River floodplain. The data indicate that ground water acts as a buffer to peak and low flows in Kentucky River Basin streams. At current withdrawal rates, ground-water usage does not seem to have an adverse impact on the Kentucky River. Privately owned ground-water sources supply approximately 135,000 people living in the basin-approximately 19 percent of the total population and 36 percent of the rural population. More than 50 percent of residential water supplies in eastern Kentucky rely on ground water. If aquifers are protected from pollution by wellhead protection programs and old wells are retrofitted to prevent direct contamination, then ground water will continue to provide a reliable water supply in many rural areas of the basin. However, for most of the basin, few wells will have yields adequate to supply a large demand. Ground water from present wells will not provide an adequate supply for communities with a population of over a few thousand. Limited discharge data available for springs and large wells in the basin strongly suggest that the potential for ground water to supplement current supplies should not be ignored. Discharge from well fields and springs could be used to augment surface supplies during drought. A better understanding of the distribution and quality of ground-water resources is crucial for the citizens of the basin to fully benefit from ground water

    STM characterization of the Si-P heterodimer

    Full text link
    We use scanning tunneling microscopy (STM) and Auger electron spectroscopy to study the behavior of adsorbed phosphine (PH3_{3}) on Si(001), as a function of annealing temperature, paying particular attention to the formation of the Si-P heterodimer. Dosing the Si(001) surface with ∼{\sim}0.002 Langmuirs of PH3_{3} results in the adsorption of PHx_{x} (x=2,3) onto the surface and some etching of Si to form individual Si ad-dimers. Annealing to 350∘^{\circ}C results in the incorporation of P into the surface layer to form Si-P heterodimers and the formation of short 1-dimensional Si dimer chains and monohydrides. In filled state STM images, isolated Si-P heterodimers appear as zig-zag features on the surface due to the static dimer buckling induced by the heterodimer. In the presence of a moderate coverage of monohydrides this static buckling is lifted, rending the Si-P heterodimers invisible in filled state images. However, we find that we can image the heterodimer at all H coverages using empty state imaging. The ability to identify single P atoms incorporated into Si(001) will be invaluable in the development of nanoscale electronic devices based on controlled atomic-scale doping of Si.Comment: 6 pages, 4 figures (only 72dpi

    Sustained correction of B-cell development and function in a murine model of X-linked agammaglobulinemia (XLA) using retroviral-mediated gene transfer

    Full text link
    X-linked agammaglobulinemia (XLA) is a human immunodeficiency caused by mutations in Bruton tyrosine kinase (Btk) and characterized by an arrest in early B-cell development, near absence of serum immunoglobulin, and recurrent bacteria infections. Using Btk- and Tec-deficient mice (BtkTec-/-) as a model for XLA, we determined if Btk gene therapy could correct this disorder. Bone marrow (BM) from 5-fluorouracil (5FU)-treated BtkTec-/- mice was transduced with a retroviral vector expressing human Btk and transplanted into BtkTec-/- recipients. Mice engrafted with transduced hematopoietic cells exhibited rescue of both primary and peripheral B-lineage development, revocery of peritoneal B1 B cells, and correction of serum immunoglobulin M (IgM) and IgG3 levels. Gene transfer also restored T-independent type II immune responses, and B-cell antigen receptor (BCR) proliferative responses. B-cell progenitors derived from Btk-transduced stem cells exhibited higher levels of Btk expression than non-B cells; and marking studies demonstrated a selective advantage for Btk-transduced B-lineage cells. BM derived from primary recipients also rescued Btk-dependent function in secondary hosts that had received a transplant. Together, these data demonstrate that gene transfer into hematopoietic stem cells can reconstitute Btk-dependent B-cell development and function in vivo, and strongly support the feasibility of pursuing Btk gene transfer for XLA

    Ab initio optical properties of Si(100)

    Full text link
    We compute the linear optical properties of different reconstructions of the clean and hydrogenated Si(100) surface within DFT-LDA, using norm-conserving pseudopotentials. The equilibrium atomic geometries of the surfaces, determined from self-consistent total energy calculations within the Car-Parrinello scheme, strongly influence Reflectance Anisotropy Spectra (RAS), showing differences between the p(2x2) and c(4x2)reconstructions. The Differential Reflectivity spectrum for the c(4x2) reconstruction shows a positive peak at energies < 1 eV, in agreement with experimental results.Comment: fig. 2 correcte

    Parachute Models Used in the Mars Science Laboratory Entry, Descent, and Landing Simulation

    Get PDF
    An end-to-end simulation of the Mars Science Laboratory (MSL) entry, descent, and landing (EDL) sequence was created at the NASA Langley Research Center using the Program to Optimize Simulated Trajectories II (POST2). This simulation is capable of providing numerous MSL system and flight software responses, including Monte Carlo-derived statistics of these responses. The MSL POST2 simulation includes models of EDL system elements, including those related to the parachute system. Among these there are models for the parachute geometry, mass properties, deployment, inflation, opening force, area oscillations, aerodynamic coefficients, apparent mass, interaction with the main landing engines, and off-loading. These models were kept as simple as possible, considering the overall objectives of the simulation. The main purpose of this paper is to describe these parachute system models to the extent necessary to understand how they work and some of their limitations. A list of lessons learned during the development of the models and simulation is provided. Future improvements to the parachute system models are proposed

    Angle resolved photoemission spectroscopy of Sr_2CuO_2Cl_2 - a revisit

    Full text link
    We have investigated the lowest binding-energy electronic structure of the model cuprate Sr_2CuO_2Cl_2 using angle resolved photoemission spectroscopy (ARPES). Our data from about 80 cleavages of Sr_2CuO_2Cl_2 single crystals give a comprehensive, self-consistent picture of the nature of the first electron-removal state in this model undoped CuO_2-plane cuprate. Firstly, we show a strong dependence on the polarization of the excitation light which is understandable in the context of the matrix element governing the photoemission process, which gives a state with the symmetry of a Zhang-Rice singlet. Secondly, the strong, oscillatory dependence of the intensity of the Zhang-Rice singlet on the exciting photon-energy is shown to be consistent with interference effects connected with the periodicity of the crystal structure in the crystallographic c-direction. Thirdly, we measured the dispersion of the first electron-removal states along G->(pi,pi) and G->(pi,0), the latter being controversial in the literature, and have shown that the data are best fitted using an extended t-J-model, and extract the relevant model parameters. An analysis of the spectral weight of the first ionization states for different excitation energies within the approach used by Leung et al. (Phys. Rev. B56, 6320 (1997)) results in a strongly photon-energy dependent ratio between the coherent and incoherent spectral weight. The possible reasons for this observation and its physical implications are discussed.Comment: 10 pages, 8 figure

    Longer wings for faster springs – wing length relates tospring phenology in a long-distanc e migrant across its range

    Get PDF
    In migratory birds, morphological adaptations for efficient migratory flight often oppose morphological adaptations for efficient behavior during resident periods. This includes adaptations in wing shape for either flying long distances or foraging in the vegetation and in climate-driven variation of body size. In addition, the timing of migratory flights and particularly the timely arrival at local breeding sites is crucial because fitness prospects depend on site-specific phenology. Thus, adaptations for efficient long-distance flights might be also related to conditions at destination areas. For an obligatory long-distance migrant, the common nightingale, we verified that wing length as the aerodynamically important trait, but not structural body size increased from the western to the eastern parts of the species range. In contrast with expectation from aerodynamic theory, however, wing length did not increase with increasing migration distances. Instead, wing length was associated with the phenology at breeding destinations, namely the speed of local spring green-up. We argue that longer wings are beneficial for adjusting migration speed to local conditions for birds breeding in habitats with fast spring green-up and thus short optimal arrival periods. We suggest that the speed of spring green-up at breeding sites is a fundamental variable determining the timing of migration that fine tune phenotypes in migrants across their range
    • …
    corecore