1,304 research outputs found

    The Bose-Hubbard model is QMA-complete

    Full text link
    The Bose-Hubbard model is a system of interacting bosons that live on the vertices of a graph. The particles can move between adjacent vertices and experience a repulsive on-site interaction. The Hamiltonian is determined by a choice of graph that specifies the geometry in which the particles move and interact. We prove that approximating the ground energy of the Bose-Hubbard model on a graph at fixed particle number is QMA-complete. In our QMA-hardness proof, we encode the history of an n-qubit computation in the subspace with at most one particle per site (i.e., hard-core bosons). This feature, along with the well-known mapping between hard-core bosons and spin systems, lets us prove a related result for a class of 2-local Hamiltonians defined by graphs that generalizes the XY model. By avoiding the use of perturbation theory in our analysis, we circumvent the need to multiply terms in the Hamiltonian by large coefficients

    Asymptotic entanglement in 1D quantum walks with a time-dependent coined

    Full text link
    Discrete-time quantum walk evolve by a unitary operator which involves two operators a conditional shift in position space and a coin operator. This operator entangles the coin and position degrees of freedom of the walker. In this paper, we investigate the asymptotic behavior of the coin position entanglement (CPE) for an inhomogeneous quantum walk which determined by two orthogonal matrices in one-dimensional lattice. Free parameters of coin operator together provide many conditions under which a measurement perform on the coin state yield the value of entanglement on the resulting position quantum state. We study the problem analytically for all values that two free parameters of coin operator can take and the conditions under which entanglement becomes maximal are sought.Comment: 23 pages, 4 figures, accepted for publication in IJMPB. arXiv admin note: text overlap with arXiv:1001.5326 by other author

    Overview of Quantum Error Prevention and Leakage Elimination

    Full text link
    Quantum error prevention strategies will be required to produce a scalable quantum computing device and are of central importance in this regard. Progress in this area has been quite rapid in the past few years. In order to provide an overview of the achievements in this area, we discuss the three major classes of error prevention strategies, the abilities of these methods and the shortcomings. We then discuss the combinations of these strategies which have recently been proposed in the literature. Finally we present recent results in reducing errors on encoded subspaces using decoupling controls. We show how to generally remove mixing of an encoded subspace with external states (termed leakage errors) using decoupling controls. Such controls are known as ``leakage elimination operations'' or ``LEOs.''Comment: 8 pages, no figures, submitted to the proceedings of the Physics of Quantum Electronics, 200

    Investigating the electronic structure of a supported metal nanoparticle: Pd in SiCN

    Get PDF
    We investigate the electronic structure of a Palladium nanoparticle that is partially embedded in a matrix of silicon carbonitride. From classical molecular dynamics simulations we first obtain a representative atomic structure. This geometry then serves as input to density-functional theory calculations that allow us to access the electronic structure of the combined system of particle and matrix. In order to make the computations feasible, we devise a subsystem strategy for calculating the relevant electronic properties. We analyze the Kohn-Sham density of states and pay particular attention to d-states which are prone to be affected by electronic self-interaction. We find that the density of states close to the Fermi level is dominated by states that originate from the Palladium nanoparticle. The matrix has little direct effect on the electronic structure of the metal. Our results contribute to explaining why silicon carbonitride does not have detrimental effects on the catalytic properties of palladium particles and can serve positively as a stabilizing mechanical support

    One- and two-dimensional quantum walks in arrays of optical traps

    Get PDF
    We propose a novel implementation of discrete time quantum walks for a neutral atom in an array of optical microtraps or an optical lattice. We analyze a one-dimensional walk in position space, with the coin, the additional qubit degree of freedom that controls the displacement of the quantum walker, implemented as a spatially delocalized qubit, i.e., the coin is also encoded in position space. We analyze the dependence of the quantum walk on temperature and experimental imperfections as shaking in the trap positions. Finally, combining a spatially delocalized qubit and a hyperfine qubit, we also give a scheme to realize a quantum walk on a two-dimensional square lattice with the possibility of implementing different coin operators.Comment: 10 pages, 8 figures; v2: some comments added and other minor change

    Exchange-Only Dynamical Decoupling in the 3-Qubit Decoherence Free Subsystem

    Full text link
    The Uhrig dynamical decoupling sequence achieves high-order decoupling of a single system qubit from its dephasing bath through the use of bang-bang Pauli pulses at appropriately timed intervals. High-order decoupling of single and multiple qubit systems from baths causing both dephasing and relaxation can also be achieved through the nested application of Uhrig sequences, again using single-qubit Pauli pulses. For the 3-qubit decoherence free subsystem (DFS) and related subsystem encodings, Pauli pulses are not naturally available operations; instead, exchange interactions provide all required encoded operations. Here we demonstrate that exchange interactions alone can achieve high-order decoupling against general noise in the 3-qubit DFS. We present decoupling sequences for a 3-qubit DFS coupled to classical and quantum baths and evaluate the performance of the sequences through numerical simulations

    Role of social environment and social clustering in spread of opinions in co-evolving networks

    Get PDF
    Taking a pragmatic approach to the processes involved in the phenomena of collective opinion formation, we investigate two specific modifications to the co-evolving network voter model of opinion formation, studied by Holme and Newman [1]. First, we replace the rewiring probability parameter by a distribution of probability of accepting or rejecting opinions between individuals, accounting for the asymmetric influences in relationships among individuals in a social group. Second, we modify the rewiring step by a path-length-based preference for rewiring that reinforces local clustering. We have investigated the influences of these modifications on the outcomes of the simulations of this model. We found that varying the shape of the distribution of probability of accepting or rejecting opinions can lead to the emergence of two qualitatively distinct final states, one having several isolated connected components each in internal consensus leading to the existence of diverse set of opinions and the other having one single dominant connected component with each node within it having the same opinion. Furthermore, and more importantly, we found that the initial clustering in network can also induce similar transitions. Our investigation also brings forward that these transitions are governed by a weak and complex dependence on system size. We found that the networks in the final states of the model have rich structural properties including the small world property for some parameter regimes. [1] P. Holme and M. Newman, Phys. Rev. E 74, 056108 (2006)

    Hitting time for the continuous quantum walk

    Full text link
    We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate λ\lambda. From this definition we derive an explicit formula for the hitting time, and explore its dependence on the measurement rate. As the measurement rate goes to either 0 or infinity the hitting time diverges; the first divergence reflects the weakness of the measurement, while the second limit results from the Quantum Zeno effect. Continuous-time quantum walks, like discrete-time quantum walks but unlike classical random walks, can have infinite hitting times. We present several conditions for existence of infinite hitting times, and discuss the connection between infinite hitting times and graph symmetry.Comment: 12 pages, 1figur

    Asymptotic entanglement in a two-dimensional quantum walk

    Full text link
    The evolution operator of a discrete-time quantum walk involves a conditional shift in position space which entangles the coin and position degrees of freedom of the walker. After several steps, the coin-position entanglement (CPE) converges to a well defined value which depends on the initial state. In this work we provide an analytical method which allows for the exact calculation of the asymptotic reduced density operator and the corresponding CPE for a discrete-time quantum walk on a two-dimensional lattice. We use the von Neumann entropy of the reduced density operator as an entanglement measure. The method is applied to the case of a Hadamard walk for which the dependence of the resulting CPE on initial conditions is obtained. Initial states leading to maximum or minimum CPE are identified and the relation between the coin or position entanglement present in the initial state of the walker and the final level of CPE is discussed. The CPE obtained from separable initial states satisfies an additivity property in terms of CPE of the corresponding one-dimensional cases. Non-local initial conditions are also considered and we find that the extreme case of an initial uniform position distribution leads to the largest CPE variation.Comment: Major revision. Improved structure. Theoretical results are now separated from specific examples. Most figures have been replaced by new versions. The paper is now significantly reduced in size: 11 pages, 7 figure

    Responsive glyco-poly(2-oxazoline)s: synthesis, cloud point tuning, and lectin binding

    Get PDF
    A new sugar-substituted 2-oxazoline monomer was prepared using the copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction. Its copolymerization with 2-ethyl-2-oxazoline as well as 2-(dec-9-enyl)-2-oxazoline, yielding well-defined copolymers with the possibility to tune the properties by thiol-ene "click" reactions, is described. Extensive solubility studies on the corresponding glycocopolymers demonstrated that the lower critical solution temperature behavior and pH-responsiveness of these copolymers can be adjusted in water and phosphate-buffered saline (PBS) depending on the choice of the thiol. By conjugation of 2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose and subsequent deprotection of the sugar moieties, the hydrophilicity of the copolymer could be increased significantly, allowing a cloud-point tuning in the physiological range. Furthermore, the binding capability of the glycosylated copoly(2-oxazoline) to concanavalin A was investigated
    corecore