572 research outputs found
Raising children on a vegan diet: Parents’ opinion on problems in everyday life
A growing number of Italian families are adopting a vegan diet (VD) for their offspring from infancy for various reasons, with health benefits and ethics being the most common reasons. Barriers to effective communication with primary care pediatricians (PCPs) are perceived by many parents and, depending on the actors involved and the environment, a VD may affect social interactions in everyday life. A national cross‐sectional survey was conducted between July and September 2020. Parents of children following a VD completed an online questionnaire. Data from 176 Italian parents were collected. About 72% (71.8%) of the children included in this study had been on a VD since weaning. Parents did not inform their primary care pediatricians (PCP) about the VD in 36.2% of the cases. In 70.8% of the cases, PCPs were perceived as skeptical or against a VD. About 70% (71.2%) of the parents relied on medical dietitians, and 28.2% on nutritionists/dietitians for dietary counseling. Parents administered an individual B12 supplement in 87.2% of the cases. To the best of our knowledge, this survey is the first which explores the relationship between vegan parents and their PCPs, the parental management of their children’s diet and problems regarding the implementation of a VD in everyday life
A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis
The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10–7 and 1.16 x 10–6], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors
Pathogenic VCP mutations induce mitochondrial uncoupling and reduced ATP levels.
Valosin-containing protein (VCP) is a highly expressed member of the type II AAA+ ATPase family. VCP mutations are the cause of inclusion body myopathy, Paget’s disease of the bone, and frontotemporal dementia (IBMPFD) and they account for 1%–2% of familial amyotrophic lateral sclerosis (ALS). Using fibroblasts from patients carrying three independent pathogenic mutations in the VCP gene, we show that VCP deficiency causes profound mitochondrial uncoupling leading to decreased mitochondrial membrane potential and increased mitochondrial oxygen consumption. This mitochondrial uncoupling results in a significant reduction of cellular ATP production. Decreased ATP levels in VCP-deficient cells lower their energy capacity, making them more vulnerable to high energy-demanding processes such as ischemia. Our findings propose a mechanism by which pathogenic VCP mutations lead to cell death
Proteostasis and ALS: Protocol for a phase II, randomised, double-blind, placebo-controlled, multicentre clinical trial for colchicine in ALS (Co-ALS)
Introduction: Disruptions of proteasome and autophagy systems are central events in amyotrophic lateral sclerosis (ALS) and support the urgent need to find therapeutic compounds targeting these processes. The heat shock protein B8 (HSPB8) recognises and promotes the autophagy-mediated removal of misfolded mutant SOD1 and TDP-43 fragments from ALS motor neurons (MNs), as well as aggregating species of dipeptides produced in C9ORF72-related diseases. In ALS-SOD1 mice and in human ALS autopsy specimens, HSPB8 is highly expressed in spinal cord MNs that survive at the end stage of disease. Moreover, the HSPB8-BAG3-HSP70 complex maintains granulostasis, which avoids conversion of dynamic stress granules (SGs) into aggregation-prone assemblies. We will perform a randomised clinical trial (RCT) with colchicine, which enhances the expression of HSPB8 and of several autophagy players, blocking TDP-43 accumulation and exerting crucial activities for MNs function. Methods and analysis: Colchicine in amyotrophic lateral sclerosis (Co-ALS) is a double-blind, placebo-controlled, multicentre, phase II RCT. ALS patients will be enrolled in three groups (placebo, colchicine 0.01 mg/day and colchicine 0.005 mg/day) of 18 subjects treated with riluzole; treatment will last 30 weeks, and follow-up will last 24 weeks. The primary aim is to assess whether colchicine decreases disease progression as measured by ALS Functional Rating Scale - Revised (ALSFRS-R) at baseline and at treatment end. Secondary aims include assessment of (1) safety and tolerability of Colchicine in patiets with ALS; (2) changes in cellular activity (autophagy, protein aggregation, and SG and exosome secretion) and in biomarkers of disease progression (neurofilaments); (3) survival and respiratory function and (4) quality of life. Preclinical studies with a full assessment of autophagy and neuroinflammation biomarkers in fibroblasts, peripheral blood mononuclear cells and lymphoblasts will be conducted in parallel with clinic assessment to optimise time and resources. Ethics and dissemination: The study protocol was approved by the Ethics Committee of Area Vasta Emilia Nord and by Agenzia Italiana del Farmaco (EUDRACT N.2017-004459-21) based on the Declaration of Helsinki. This research protocol was written without patient involvement. Patients' association will be involved in disseminating the study design and results. Results: will be presented during scientific symposia or published in scientific journals
Spinal cord hypermetabolism extends to skeletal muscle in amyotrophic lateral sclerosis: a computational approach to [18F]-fluorodeoxyglucose PET/CT images
Purpose: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease leading to neuromuscular palsy and death. We propose a computational approach to [18F]-fluorodeoxyglucose (FDG) PET/CT images to analyze the structure and metabolic pattern of skeletal muscle in ALS and its relationship with disease aggressiveness. Materials and methods: A computational 3D method was used to extract whole psoas muscle\u2019s volumes and average attenuation coefficient (AAC) from CT images obtained by FDG PET/CT performed in 62 ALS patients and healthy controls. Psoas average standardized uptake value (normalized on the liver, N-SUV) and its distribution heterogeneity (defined as N-SUV variation coefficient, VC-SUV) were also extracted. Spinal cord and brain motor cortex FDG uptake were also estimated. Results: As previously described, FDG uptake was significantly higher in the spinal cord and lower in the brain motor cortex, in ALS compared to controls. While psoas AAC was similar in patients and controls, in ALS a significant reduction in psoas volume (3.6 \ub1 1.02 vs 4.12 \ub1 1.33 mL/kg; p < 0.01) and increase in psoas N-SUV (0.45 \ub1 0.19 vs 0.29 \ub1 0.09; p < 0.001) were observed. Higher heterogeneity of psoas FDG uptake was also documented in ALS (VC-SUV 8 \ub1 4%, vs 5 \ub1 2%, respectively, p < 0.001) and significantly predicted overall survival at Kaplan\u2013Meier analysis. VC-SUV prognostic power was confirmed by univariate analysis, while the multivariate Cox regression model identified the spinal cord metabolic activation as the only independent prognostic biomarker. Conclusion: The present data suggest the existence of a common mechanism contributing to disease progression through the metabolic impairment of both second motor neuron and its effector
Murine cerebral organoids develop network of functional neurons and hippocampal brain region identity
Brain organoids are in vitro three-dimensional (3D) self-organized neural structures, which can enable disease modeling and drug screening. However, their use for standardized large-scale drug screening studies is limited by their high batch-to-batch variability, long differentiation time (10\u201320 weeks), and high production costs. This is particularly relevant when brain organoids are obtained from human induced pluripotent stem cells (iPSCs). Here, we developed, for the first time, a highly standardized, reproducible, and fast (5 weeks) murine brain organoid model starting from embryonic neural stem cells. We obtained brain organoids, which progressively differentiated and self-organized into 3D networks of functional neurons with dorsal forebrain phenotype. Furthermore, by adding the morphogen WNT3a, we generated brain organoids with specific hippocampal region identity. Overall, our results showed the establishment of a fast, robust and reproducible murine 3D in vitro brain model that may represent a useful tool for high-throughput drug screening and disease modeling
G-quadruplex-binding small molecules ameliorate C9orf72 FTD/ALS pathology in vitro and in vivo
Intronic GGGGCC repeat expansions in C9orf72 are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy. We performed a screen that identified three structurally related small molecules that specifically stabilise GGGGCC repeat G-quadruplex RNA We investigated their effect in C9orf72 patient iPSC-derived motor and cortical neurons and show that they significantly reduce RNA foci burden and the levels of dipeptide repeat proteins. Furthermore, they also reduce dipeptide repeat proteins and improve survival in vivo, in GGGGCC repeat-expressing Drosophila Therefore, small molecules that target GGGGCC repeat G-quadruplexes can ameliorate the two key pathologies associated with C9orf72 FTD/ALS These data provide proof of principle that targeting GGGGCC repeat G-quadruplexes has therapeutic potential
- …