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Abstract

Purpose: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease leading to neuromuscular palsy and
death. We propose a computational approach to [18F]-fluorodeoxyglucose (FDG) PET/CT images to analyze the
structure and metabolic pattern of skeletal muscle in ALS and its relationship with disease aggressiveness.

Materials and methods: A computational 3D method was used to extract whole psoas muscle’s volumes and
average attenuation coefficient (AAC) from CT images obtained by FDG PET/CT performed in 62 ALS patients and
healthy controls. Psoas average standardized uptake value (normalized on the liver, N-SUV) and its distribution
heterogeneity (defined as N-SUV variation coefficient, VC-SUV) were also extracted. Spinal cord and brain motor
cortex FDG uptake were also estimated.

Results: As previously described, FDG uptake was significantly higher in the spinal cord and lower in the brain
motor cortex, in ALS compared to controls. While psoas AAC was similar in patients and controls, in ALS a
significant reduction in psoas volume (3.6 + 1.02 vs 4.12 + 1.33 mlL/kg; p < 0.01) and increase in psoas N-SUV (0.45
+0.19 vs 029 + 0.09; p < 0.001) were observed. Higher heterogeneity of psoas FDG uptake was also documented
in ALS (VC-SUV 8 + 4%, vs 5 + 2%, respectively, p < 0.001) and significantly predicted overall survival at Kaplan—
Meier analysis. VC-SUV prognostic power was confirmed by univariate analysis, while the multivariate Cox regression
model identified the spinal cord metabolic activation as the only independent prognostic biomarker.

Conclusion: The present data suggest the existence of a common mechanism contributing to disease progression
through the metabolic impairment of both second motor neuron and its effector.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a fatal neuro-
degenerative disease of adult life, characterized by a
progressive impairment of motor function. Its time
course is extremely variable, with time elapsing from
diagnosis to death or severe inability ranging from
months to years. This heterogeneity prevents an accurate
outcome prediction and hampers the development of
new therapeutic approaches. However, the lack of
validated biomarkers and the limited knowledge about
disease mechanisms inevitably hampers the identifica-
tion of target patients and limit a correct identification
of treatment effects. This uncertainty thus raises an
urgent need to develop biomarkers able to characterize
the mechanisms underlying disease progression.

PET/CT imaging potentially allows to integrate infor-
mation derived from all ALS target tissues, in particular
from the brain, spinal cord, and skeletal muscles in
living patients, targeting a variety of potential patho-
physiological mechanisms related to tissue metabolism,
inflammation, and oxidative stress. We recently reported
the potential of a computational approach in extracting
spinal cord metabolism from FDG PET/CT scanning in
ALS patients [1]. This approach documented a meta-
bolic activation of this nervous site facing an opposite
pattern in the brain cortex that showed a generalized
reduction in tracer uptake [2].

In the present study, we aimed to integrate our previ-
ous observation with the evaluation of structural and
metabolic features of psoas muscles. This region was
selected because it is always included in whole-body
PET/CT scans and is less influenced by voluntary activ-
ity during the FDG uptake phase. This analysis was
complemented with the evaluation of myocardial tracer
retention, since the comparison with this non-voluntary
striated muscle allowed us to verify whether the meta-
bolic activation selectively affects the motor chain or,
rather, it reflects a systemic phenomenon involving all
striated muscles regardless their connection to the lower
motor neuron.

Material and methods

Patients with amyotrophic lateral sclerosis

The study included 62 patients retrospectively recruited
from our published database with definite, probable, or
probable laboratory-supported diagnosis of spinal-onset
ALS according to the revised El-Escorial criteria [3].
None of the enrolled patients had any history of other
neurological disorders, cerebrovascular disease, diabetes
mellitus, or systemic inflammatory disease. All subjects
provided signed informed consent to enter the study
that was approved by the Ethics Committees of IRCCS
Ospedale Policlinico San Martino in Genoa and of AUO
Citta della Salute e della Scienza in Turin, Italy.
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As part of our clinical procedure, patients were sub-
mitted to our follow-up program by medical examin-
ation or phone interview. Over the follow-up period of
60 months data were available for 56/62 patients while
no information could be obtained for the remaining six.

Control subjects

Findings obtained in ALS patients were compared with
the corresponding data in control subjects selected from
two different databases. Metabolic activity and structure
of spinal cord as well as of psoas muscle were compared
with the corresponding findings in 62 subjects selected
submitted to FDG PET/CT scan > 1 year after complete
removal of histologically diagnosed melanoma, subse-
quent histologically negative sentinel lymph node, and
no evidence of relapse at least 2 years after surgery [4].
These records were extracted from the databases of the
two centers and selection of each subject was performed
to optimize the case-control criterion according to the
used scanner, sex, and age.

For brain analysis, FDG uptake of ALS patients was
compared with the published corresponding data in 44
normal volunteers with normal findings at neuropsycho-
logical evaluation and brain MRI as previously defined [5].

PET/CT imaging

All PET/CT scans were acquired according to current
guidelines [6, 7]. All subjects were studied in the early
morning after fasting for 12 h. Serum glucose was
assessed, and an antecubital vein was cannulated.
Patients were invited to lie for 20 min in a silent and
darkened room, with eyes closed and ears unplugged.
FDG (4.8-5.2 MBq/kg body weight) was then injected
45-60 min before 3D scan using an integrated PET/CT
scanner (Biograph 16-Hirez, Siemens or Discovery ST-E
System, GE Healthcare). In all cases, the 15-min cerebral
acquisition was followed by whole-body imaging in arms
down position.

In both centers, PET data were reconstructed into a
128 x 128 matrix using a 3D iterative reconstruction
algorithm (OSEM, three iterative steps, eight subsets).
Raw images were scatter-corrected and processed using
a 3D Gaussian filter, while CT was used for attenuation
correction.

Image quality control documented a spatial resolution
of 4.0 mm full width at half-maximum for both scan-
ners. According to standard procedures of both labs, the
two imaging systems were cross calibrated using a
cylinder of 20 cm diameter and 20 cm length filled with
a solution containing 100 MBq of ®®*Ge. Images were
reconstructed with the same algorithm used for the
clinical protocol [6, 7]. Finally, the entire CT dataset was
co-registered with the 3D PET images using commer-
cially available software interfaces.
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Whole-body FDG-PET/CT analysis

Muscular FDG uptake was analyzed in both psoas mus-
cles. This site was selected because its contractile activity
is minimized with patient resting in the supine position
and thus in the interval between FDG injection and
PET/CT acquisition; moreover, a large part of its volume
is systematically included in a whole-body PET/CT
acquisition and, finally, its size and structure have been
proposed as relevant prognostic predictors in different
disease states [8, 9].

Usually, psoas muscles are evaluated at CT by select-
ing a single muscle slice at the level of the third lumbar
vertebra. To improve the accuracy of this evaluation, we
developed a computational approach as to extract the
entire recognizable muscle volume. The algorithm fol-
lows a slight modification of the general strategy previ-
ously validated by our lab for the assessment of bone
marrow metabolic activity [4, 10]. According to this
approach, the first step implies a visual inspection of CT
images to define the proximal insertion of both psoas
muscles at starting from the soma of D12 vertebra. To
standardize volume definition, the caudal limit of the
investigated volume was set at the plane crossing L5-S1
junction. Included slices were fed into an in-house
developed software that utilizes histogram equalization
and edge detection in order to segment the psoas vol-
ume. In the case of not-closed, not-connected edges, the
software applies an a-shape algorithm [11] to identify
the region corresponding to the inner muscle. After this
automatic recognition, each slice was used to construct
a binary mask, with the value set at 1 inside the domain
representing the muscle and 0O elsewhere. The mask was
adjusted in order to account for the differences between
CT and PET pixel dimensions, downsampling the CT
masks to the PET resolution. The post-processed masks
were eventually multiplied against the PET data to
extract the information on the FDG uptake in corres-
pondence of the muscle voxels. The final product was
thus two DICOM file series, reporting the CT and PET
data, respectively. CT image was used to compute psoas
volume and AAC (expressed in Hounsfield units). PET
images were analyzed to estimate psoas FDG uptake,
expressed as average standardized uptake value (SUV)
and its heterogeneity expressed by the variation coeffi-
cient (VC-SUV, expressed in %), defined as the ratio be-
tween N-SUV SD and N-SUV average within the voxels
of the two muscles of each patient. Spinal cord analysis
was performed as previously described [1, 2]. Finally,
myocardial FDG uptake was assessed as previously de-
scribed [12]. Briefly, a volume of interest (average 6 + 3
mL) was identified on the visible left ventricular (LV)
myocardium on PET images while CT series was used as
a reference, only in case of absent cardiac uptake. The
myocardial volume of interest was set at a minimum

Page 3 of 10

value of at least 10 mL. The average SUV in this volume
was estimated and divided for the corresponding average
value in the liver to obtain myocardial N-SUV.

According to our procedure, all SUVs were divided by
the corresponding average liver SUVs to account for
possible differences in scanner sensitivity as to obtain
the normalized SUVs (N-SUVs). In order to account for
the obvious effect of body conformation and gender,
psoas volume was normalized for the expected body
volume calculated by the estimation of ideal body
weight (IBW) according to the conventional formula
of Robinson et al. [13].

Brain FDG-PET/CT analysis

Original DICOM data of brain acquisition were converted
to NifTI-1 format using SPM8 DICOM Import [14]. PET
images were normalized to a customized previously pub-
lished template [15] and smoothed with an 8-mm full
width at half maximum Gaussian Kernel. Brain Map
Ginger ALE 2.3 (Eickhoff SB, Laird AR) was used to con-
vert coordinates of significant clusters in the Montreal
Neurological Institute (MNI) space into Talairach coordi-
nates. Brodmann areas (BAs) were then identified at a
range of 0 to 3 mm from the corrected Talairach coordi-
nates of the SPM output isocenters, after importing the
corrected coordinates by means of Talairach client (http://
www.talairach.org/index.html).

After this preliminary processing, the preprocessed
NifTI-1 PET images were converted in whole-brain SUV
parametric maps dividing the product between radio-
tracer concentration (kBq/ml) and body weight (in kg)
by the injected FDG dose (in MBq) [16—18]. Thereafter,
WEFU PickAtlas and NiftyReg were used to automatically
identify volumes of interest corresponding to the motor
cortex (Brodmann Area 4 (BA4)) in both hemispheres.
All healthy control subjects were submitted to exclusive
brain PET imaging. Accordingly, due to the absence of
liver FDG uptake in this cohort, motor cortex FDG
accumulation was analyzed considering the raw SUV
since normalization for liver uptake was not possible.

Statistical analysis

All data are reported as means + SD. Unpaired or paired
t tests were used, as appropriate, to compare spinal cord
N-SUV and motor cortex SUV, as well as all the compu-
tationally obtained FDG PET/CT variables describing
psoas muscles (volume, AAC, N-SUV, VC-SUV). Linear
regression analysis was performed using the least-
squares method. A p value < 0.05 was considered signifi-
cant. To assess the prognostic relevance of each of the
following seven variables (i.e., age, ALS functional score
and spinal cord N-SUV, psoas volume, N-SUV, VC-SUV
and, finally, motor cortex SUV), the 56 patients were
divided into two groups using the median value of that


http://www.talairach.org/index.html
http://www.talairach.org/index.html

Bauckneht et al. EINMMI Research (2020) 10:23 Page 4 of 10
Table 1 FDG uptake data in ALS patients and control subjects
Average SD Median First quartile Third quartile IQOR p value

Spinal cord N-SUV ALS patients 0.76 0.2 0.74 0.59 0.86 0.27 p < 0.05
Control subjects 0.66 0.12 0.65 0.59 0.79 0.20

Cervical spinal cord N-SUV ALS patients 0.96 03 0.94 0.74 1.15 041 p <001
Control subjects 0.73 0.2 0.70 0.64 0.96 032

Dorsal spinal cord N-SUV ALS patients 0.69 022 0.65 0.53 0.79 0.26 p=ns
Control subjects 0.64 0.11 0.66 0.25 040 0.15

Brodmann Area 4 ALS patients 5.59 1.3 503 475 648 173 p <001
Control subjects 6.67 03 6.3 6.29 7.18 0.89

Whole brain cortex ALS patients 511 13 5.08 452 6.54 202 p <001
Control subjects 5.95 0.2 5.98 564 6.41 0.77

Psoas muscle ALS patients 045 0.19 043 0.36 0.55 0.19 p <001
Control subjects 0.29 0.09 0.28 0.23 0.35 0.12

Fig. 1 Examples of psoas muscle extraction from PET/CT images. Computational extraction of the spinal cord and psoas regions of interest from
axial FDG PET/CT images in ALS patient (a) and healthy control (c). In panels b and d, the 3D reconstruction of obtained volumes of interest on
the skeleton of these subjects are reported
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variable, thus resulting in two groups that differed in com-
position time by time according to the selected parameter.
Survival was analyzed using the Kaplan—Meier method and
compared using the log-rank test. Thereafter, a set of uni-
variate and multivariate Cox proportional hazard models
were fitted to the data. In the univariate analysis, the inci-
dence of death was modeled as a function of each of the
seven variables. Then, these same variables were tentatively
included in a multivariate Cox model by means of a step-
down (backward) procedure, based on the likelihood ratio
test: variables with a p value > 0.1 were removed from the
model. Proportionality assumptions were assessed as
previously described [19].

Results

Clinical characteristics of the patient cohort

Within ALS cohort, there were 36 males and 26 females,
mean age was 62 + 12 years, body weight was 69 + 13
kg. ALSFRS-R score, collected for each patient at
imaging date, ranged from 20 to 46/48 (average 39 + 5).
Overall, 22 and 40 subjects for either cohort were
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acquired with Siemens Hirez or GE Discovery, respect-
ively. The time elapsed from ALS onset and PET/CT
scanning was 18 + 14 months (range 3-82). For the 56
available patients, follow-up lasted 26 + 14 months after
imaging (median 22 months, range 2-58 months).
During this period, 21/56 (37%) patients died, in most
cases because of respiratory complications.

PET/CT description of ALS effect on central nervous
system

In agreement with our previous reports, the spinal cord
and motor cortex displayed an opposite metabolic re-
sponse to ALS. As shown in Table 1, the average FDG
uptake of the whole spinal cord was significantly higher
in patients than in controls. This difference was evident
in cervical segments while it was not appreciable in the
dorsal trait. This response of spinal cord metabolism
was independent from demographic and clinical vari-
ables as well as from time elapsed from diagnosis to
imaging. By contrast, the effect of ALS on tracer reten-
tion in the brain cortex was the opposite. Indeed, SUV

Cervical spnal cord
average N-SUV

2,0 1
A
E 1,6 4
o >
° D
- ®n
< |
g Z| 1,2 m
%‘ gn ;J
G R y = 1,077 + 0,4832 <
S5 R2=0,441
2z
%]
@] 0,4
0,0 T T T T \
0,00 0,20 0,40 0,60 0,80 1,00 1,20
B 2,0 1

y=-0,5154x + 0,8777

Healthy Controls

03 R>=0,053

04

0,0 . . , , , ,
0,00 0,20 0,40 0,60 0,80 1,00 1,20

Psoases average N-SUV

Fig. 2 Psoas FDG uptake mirrors spinal cord hypermetabolism in ALS. In ALS, a direct correlation between the cervical spinal cord and psoas
average N-SUV was documented (a), while these two indexes were largely independent in healthy controls (b)
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in the brain cortex was lower in patients than in control
subjects in both BA4 and whole brain (Table 1).

PET/CT description of ALS effect on skeletal muscles

An example of psoas muscle extraction from PET/CT
images in reported in Fig. 1. ALS did not affect the CT
indexes of psoas muscle composition. Indeed, AAC was
remarkably similar in patients and controls (39.4 + 8.4
vs 39.1 + 11.3 HU, respectively, p = ns). By contrast,
muscle mass was significantly affected by ALS, since
volume normalized for IBW was significantly lower in
patients compared to control subjects (3.6 + 1.02 vs 4.2
+ 1.33 mL/kg, respectively, p < 0.01). Average FDG up-
take in psoas muscles was significantly different between
the two cohorts. Indeed, psoas muscle tracer retention
was higher in ALS patients (average N-SUV 0.45 + 0.19,
median 0.43, IQR 0.19) compared to controls (average
N-SUV 0.29 £ 0.09, median 0.28, IQR 0.12), respectively
(p < 0.001). Moreover, ALS was also associated with
increased heterogeneity of FDG accumulation, since the
VC-SUV was higher in patients than in controls (VC-
SUV 8 + 4%, vs 5 + 2%, respectively, p < 0.001). Of note,
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this difference did not involve the non-voluntary striated
muscle represented by the myocardium, whose patients
average N-SUV 1.52 + 0.88, median 1.40 and IQR 2.12
were similar compared to controls (average N-SUV 1.73
+ 1.1, median 1.80, IQR 1.08), respectively, p = ns.

ALS induced a similar response in skeletal muscles
and spinal cord metabolic activity. Indeed, as shown in
Fig. 2, psoas N-SUV was directly and significantly corre-
lated with spinal cord N-SUV in patients but not in
control subjects. By contrast, psoas muscle N-SUV was
independent of the corresponding metabolic index in
the whole brain and BA4 average SUV (Additional file 1:
Figure S1).

Metabolic pattern and patient outcome

As a first step to evaluate their prognostic relevance, we
first verified the presence of significant differences in
measured indexes between the 21 patients who died dur-
ing the clinical follow-up compared to the 35 survivors.
As shown in Fig. 3, this analysis showed that higher
mortality rates were associated with a higher FDG up-
take in the spinal cord and a lower FDG accumulation
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in BA4. Psoas muscle showed a similar metabolic index
in the two groups but higher volumes and greater
homogeneity of tracer retention in survivors.

This difference was largely confirmed by the Kaplan-—
Meier analysis. ALS mortality rate was higher in patients
with BA4 SUV lower than the median value (Fig. 4a).
Conversely, N-SUV greater than the median value in the
spinal cord predicted poorer overall survival (Fig. 4b).
Shifting to the analysis of skeletal muscle, psoas volume
was devoid of any predictive power (Fig. 4c). An increase
in overall tracer retention, indexed by N-SUV, showed
an appreciable, though not significant, association with a
higher mortality rate (Fig. 4d), that was instead predicted
by a heterogeneous tracer distribution in the muscle
volume as defined by VC-SUV values over the median
(Fig. 4e). These evaluations were confirmed by univariate
analyses. However, the multivariate Cox regression
model identified the spinal cord metabolic activation as
the only independent predictive biomarker (hazard ratio
5.17, 95% confidence interval 1.74-15.38, p = 0.001), as
detailed in Table 2.
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Discussion

The main finding of the present study is that the increase
in FDG uptake caused by ALS in the spinal cord also in-
volves the skeletal muscle. By contrast, this activation was
not observed in the brain motor cortex that rather showed
an opposite metabolic response characterized by a hypo-
metabolism independent on the behavior of the spinal
cord and skeletal muscle. The direct link between the
metabolic pattern of the spinal cord and skeletal muscles
selectively occurred in ALS patients and did not involve
the striated myocardial muscle, independent on choliner-
gic neuromuscular synapses. In this series of patients,
muscle volume was devoid of any prognostic predictive
power that was instead marginally retained by FDG
uptake and significantly predicted by its distribution
within the tissue.

Although the exact mechanism underlying this meta-
bolic response cannot be identified based on the present
data, as demonstrated by the multivariate analysis, out-
come prediction provided by the psoas metabolic pattern
was largely dependent on the corresponding index in the

~

Time from PET/CT scan (months)

A BA4 N-SUV B Spinal cord N-SUV
1 1
0,9 1 0,9 1
0.8 0,8
0,7 4 0,7
)
06 ] 26 . < median
0.5 3 A5 3
=
0.4 D4
3
03 1 0.3 3 . > median
0.2 4 Log Rank <0.05 0.2 3 Log Rank <0.001
0,1 0,1
0 T T T T " 0 T T T T ]
0 12 24 36 48 60 0 12 24 36 48 60

Time from PET/CT scan (months)

Time (months)

C Psoas Volume D Psoas N-SUV E Psoas VC-SUV
1 1 I -
09 09 09
0,8 4 0,8 1 0,8
071 0.7 3
3 07
£ 067 0,6 9 % 0,6
3 05 ] 0.5 3 B0s
E =N I
5 04 — 04 3 504
o >
03 03 Co3
02 ] Log Rank 0.307 02 3 Log Rank 0.08 02 3 Log Rank <0.05
0.1 3 0.1 3 0.1
0 . . . . , 0 . . . . , 0 . . . . ,
0 12 24 36 48 60 0 12 24 36 48 60 0 12 24 36 48 60

Time from PET/CT scan (months)

Time fron PET/CT scan (months)

Fig. 4 Metabolic predictors of patient outcome. Kaplan—Meier curves in ALS patients based on FDG PET/CT-derived parameters are represented.
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Table 2 Predictive power of tested variables at univariate and multivariate analysis

Variable Outcome results Univariate analysis Cox regression model
No. of No. of Mortality rate Hazard 95% confidence p Hazard 95% confidence p
patients deaths (%) ratio interval ratio interval
Age
< 63 years 28 7 25 1 (reference) - 0.1
> 63 years 28 14 50 2.37 0.771-7.32
Psoas volume
<34 28 13 46 1 (reference) - 0.17
>34 28 8 29 2.17 0.717-6.550
Psoas N-SUV
<042 28 9 32 1 (reference) - 041
> 042 28 12 43 1.58 0.53-4.71
BA4 SUV
<548 28 14 50 338 1.09-10.55 0.03
> 548 28 7 25 1 (reference) -
ALSF score
<40 28 10 36 1 (reference) - 0.57
> 40 28 " 39 1.36 046-4.06
Psoas CV-SUV
< 6.59% 28 6 21 1 (reference) - 0016
> 6.59% 28 15 54 423 1.31-13.62
Spinal cord N-SUV
<092 28 4 14% 1 (reference) - 0.001 1 (reference) - 0.001
> 092 28 17 61 9.27 2.5-34.1 517 1.74-15.38

spinal cord. This dependency suggests the presence of a
common mechanism contributing to disease progression
and indexed by the metabolic feature of both second
motor neuron and its effector. By contrast, the absence
of any prognostic implication for psoas volume, suggests
that the prognostic capability of psoas metabolic activa-
tion reflects different mechanisms compared to the
acknowledged link between muscle dimension and sar-
copenia. Moreover, the psoas muscle size (largely superior
to the PET scanner spatial resolution) allowed us to docu-
ment significant heterogeneity of FDG uptake within this
region. On the one side, this finding might suggest the
presence of heterogeneous cell populations in each voxel
within the analyzed muscular volume as a possible conse-
quence of inflammatory infiltrates [20, 21]. Although no
direct evidence is available to corroborate this hypothesis,
this finding closely agrees with the evident role of inflam-
matory mechanisms in the progression of ALS muscular
damage [22] both in patients [23] and experimental
models [24]. On the other hand, this same heterogeneity
also fits with the distribution of endoplasmic reticulum
damage that has been observed at pathology both in
ALS patients and in their experimental counterparts
[25]. Current models do not consider any role for this

organelle in glucose metabolism. However, our group
recently reported evidence showing that FDG uptake
strictly reflects the activation of NADPH generation
by a pentose phosphate shunt selectively located within
the endoplasmic reticulum in cancer cells [26, 27], cardio-
myocytes [28], neurons [29] and, more importantly, in the
skeletal muscle [30].

Unfortunately, the limited spatial resolution of PET
imaging did not allow to evaluate uptake distribution
within the spinal cord. Nevertheless, neuroinflammation
is a key-signaling event in ALS [31]. Indeed, post-
mortem neuropathological studies previously showed
the presence of microglia and astrocytes activation, as
well as lymphocytes and macrophages infiltrates in both
motor cortex and spinal cord in ALS [32, 33]. These
data suggest that activated microglia might accumulate
within the degenerating areas propagating and sustaining
tissue damage through the release of free radicals and
other neurotoxic substances such as glutamate. Accord-
ing to this consideration, the divergent metabolic re-
sponse of the brain cortex and spinal cord might reflect
the contribution of different mechanisms or rather a
different time sequence in first and second motor
neuron ALS-related damage. In the latter hypothesis, the



Bauckneht et al. EINMMI Research (2020) 10:23

reduced FDG uptake of the motor cortex might be the
consequence of its thinning [34] and the consequent
underestimation related to the partial volume effect,
rather than a true hypometabolism.

Several limitations of our study must be considered.
First, brain and spinal cord/psoas muscle metabolic
patterns of ALS patients were compared with normalcy
databases collected from different cohorts. In healthy con-
trols undergoing brain PET/CT this limitation was justi-
fied by the ethical concern of extending CT (increasing
radiation exposure) to the whole body. The same consid-
eration applies to the normal whole-body PET/CT scans,
which were performed for oncological purposes and
started from the orbit, normally excluding the brain.
Second, the limited patient sample and the relatively large
inclusion criteria did not allow us to describe the exact
temporal progression between the brain and spinal cord/
psoas muscle metabolic change. Similarly, the side
coherence between brain metabolic impairment and psoas
muscle hypermetabolism was not verified. Further studies,
with larger sample sizes including ALS patients enrolled
at different time points are needed to solve these issues.

Conclusion

The analysis of psoas FDG uptake allowed us to identify
a peculiar metabolic pattern of skeletal muscle in ALS,
whose heterogeneity might provide prognostic insight in
ALS clinical history. Of course, the differences in tracer
retention of either psoas muscles or central nervous
system are too small to consider a diagnostic or predict-
ive capability for FDG imaging in ALS. Nevertheless, the
similar metabolic activation of lower motor neuron and
its effector seems to indicate that the selective response
of these two regions might represent a potential target
for patient characterization. From the clinical point of
view, the availability of a new prognostic biomarker and
its operator-independent nature could be invaluable for
the development of new therapeutic approaches, especially
in early phase clinical trials. On the pathophysiological
ground, the observed interdependency with spinal cord
metabolic pattern might suggest the existence of a
common mechanism contributing to disease progression
and indexed by the apparent increased FDG uptake in
both second motor neuron and its effector.
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