2,745 research outputs found
Microscopic description of fission in neutron-rich plutonium isotopes with the Gogny-D1M energy density functional
The most recent parametrization D1M of the Gogny energy density functional is
used to describe fission in the isotopes Pu. We resort to the
methodology introduced in our previous studies [Phys. Rev. C \textbf{88},
054325 (2013) and Phys. Rev. C \textbf {89}, 054310 (2014)] to compute the
fission paths, collective masses and zero point quantum corrections within the
Hartree-Fock-Bogoliubov framework. The systematics of the spontaneous fission
half-lives t, masses and charges of the fragments in Plutonium isotopes
is analyzed and compared with available experimental data. We also pay
attention to isomeric states, the deformation properties of the fragments as
well as to the competition between the spontaneous fission and -decay
modes. The impact of pairing correlations on the predicted t values is
demonstrated with the help of calculations for Pu in which the
pairing strengths of the Gogny-D1M energy density functional are modified by 5
and 10 , respectively. We further validate the use of the D1M
parametrization through the discussion of the half-lives in Fm. Our
calculations corroborate that, though the uncertainties in the absolute values
of physical observables are large, the Gogny-D1M Hartree-Fock-Bogoliubov
framework still reproduces the trends with mass and/or neutron numbers and
therefore represents a reasonable starting point to describe fission in heavy
nuclear systems from a microscopic point of view.Comment: 14 pages, 11 figures. arXiv admin note: text overlap with
arXiv:1312.722
Microscopic description of fission in Uranium isotopes with the Gogny energy density functional
The most recent parametrizations D1S, D1N and D1M of the Gogny energy density
functional are used to describe fission in the isotopes U. Fission
paths, collective masses and zero point quantum corrections, obtained within
the constrained Hartree-Fock-Bogoliubov approximation, are used to compute the
systematics of the spontaneous fission half-lives , the masses
and charges of the fission fragments as well as their intrinsic shapes. The
Gogny-D1M parametrization has been benchmarked against available experimental
data on inner and second barrier heights, excitation energies of the fission
isomers and half-lives in a selected set of Pu, Cm, Cf, Fm, No, Rf, Sg, Hs and
Fl nuclei. It is concluded that D1M represents a reasonable starting point to
describe fission in heavy and superheavy nuclei. Special attention is also paid
to understand the uncertainties in the predicted values arising
from the different building blocks entering the standard semi-classical
Wentzel-Kramers-Brillouin formula. Although the uncertainties are large, the
trend with mass or neutron numbers are well reproduced and therefore the theory
still has predictive power. In this respect, it is also shown that
modifications of a few per cent in the pairing strength can have a significant
impact on the collective masses leading to uncertainties in the
values of several orders of magnitude.Comment: 22 pages, 17 figures; Minor modifications to previous versio
Specialization in the bargaining family
We develop a two period family decision making model in which spouses bargain over their contributions to a family public good and the distribution of private consumption. In contrast to most models in the literature, specialization within the couple emerges endogenously from the production of the public good, and is not caused by exogenous differences between the spouses. Increasing marginal benefits of labour market experience make specialization efficient, even if both spouses have equal market and household productivities on the outset. If spouses are not able to enter into a binding contract governing the distribution of private consumption in the second period, the spouse specialized in market labour cannot commit to compensate the other spouse for foregone investments in earnings power. As a consequence, this spouse may withdraw part of his/her contribution and the provision level of the household good is likely to be inefficiently low.Family bargaining, specialization, private provision of public goods
Microscopic description of fission in nobelium isotopes with the Gogny-D1M energy density functional
Constrained mean-field calculations, based on the Gogny-D1M energy density
functional, have been carried out to describe fission in the isotopes
No. The even-even isotopes have been considered within the standard
Hartree-Fock-Bogoliobov (HFB) framework while for the odd-mass ones the Equal
Filling Approximation (HFB-EFA) has been employed. Ground state quantum numbers
and deformations, pairing energies, one-neutron separation energies, inner and
outer barrier heights as well as fission isomer excitation energies are given.
Fission paths, collective masses and zero-point quantum vibrational and
rotational corrections are used to compute the systematic of the spontaneous
fission half-lives t both for even-even and odd-mass nuclei.
Though there exists a strong variance of the predicted fission rates with
respect to the details involved in their computation, it is shown that both the
specialization energy and the pairing quenching effects, taken into account
within the self-consistent HFB-EFA blocking procedure, lead to larger
t values in odd-mass nuclei as compared with their even-even
neighbors. Alpha decay lifetimes have also been computed using a
parametrization of the Viola-Seaborg formula. The high quality of the Gogny-D1M
functional regarding nuclear masses leads to a very good reproduction of
values and consequently of lifetimes.Comment: 13 pages, 9 figure
Shape evolution in Yttrium and Niobium neutron-rich isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in neutron-rich odd-A Yttrium and
Niobium isotopes. We use a selfconsistent Hartree-Fock-Bogoliubov formalism
based on the Gogny energy density functional with two parametrizations, D1S and
D1M. The equal filling approximation is used to describe odd-A nuclei
preserving both axial and time reversal symmetries. Shape-transition signatures
are identified in the N=60 isotopes in both charge radii and spin-parities of
the ground states. These signatures are a common characteristic for nuclei in
the whole mass region. The nuclear deformation and shape coexistence inherent
to this mass region are shown to play a relevant role in the understanding of
the spectroscopic features of the ground and low-lying one-quasiproton states.
Finally, a global picture of the neutron-rich A=100 mass region from Krypton up
to Molybdenum isotopes is illustrated with the systematics of the nuclear
charge radii isotopic shifts.Comment: 21 pages, 14 figures. To be published in Phys. Rev.
Spectroscopy of quadrupole and octupole states in rare-earth nuclei from a Gogny force
Collective quadrupole and octupole states are described in a series of Sm and
Gd isotopes within the framework of the interacting boson model (IBM), whose
Hamiltonian parameters are deduced from mean field calculations with the Gogny
energy density functional. The link between both frameworks is the
() potential energy surface computed within the
Hartree-Fock-Bogoliubov framework in the case of the Gogny force. The
diagonalization of the IBM Hamiltonian provides excitation energies and
transition strengths of an assorted set of states including both positive and
negative parity states. The resultant spectroscopic properties are compared
with the available experimental data and also with the results of the
configuration mixing calculations with the Gogny force within the generator
coordinate method (GCM). The structure of excited states and its
connection with double octupole phonons is also addressed. The model is shown
to describe the empirical trend of the low-energy quadrupole and octupole
collective structure fairly well, and turns out to be consistent with GCM
results obtained with the Gogny force.Comment: 17 pages, 12 figures, 4 table
Strategic patents and asymmetric litigation costs as entry deterrence instruments
To spur innovation, the patent protection system grants the patentee limited monopoly power to recoup his R&D investment, although, in general, allowing the use of the public good "innovation" is socially efficient. But patents and patent threats can also be used strategically, e.g. to deter entry from competitors. This note shows that, besides incumbency, the present patent protection system constitutes an additional strategic instrument that favors the incumbent, because asymmetric litigation costs may deter entry from potential rivals.Entry deterrence
Signatures of shape transition in odd-A neutron-rich Rubidium isotopes
The isotopic evolution of the ground-state nuclear shapes and the systematics
of one-quasiproton configurations are studied in odd-A Rubidium isotopes. We
use a selfconsistent Hartree-Fock-Bogoliubov formalism based on the Gogny
energy density functional with two parametrizations, D1S and D1M, and
implemented with the equal filling approximation. We find clear signatures of a
sharp shape transition at N=60 in both charge radii and spin-parity of the
ground states, which are robust, consistent to each other, and in agreement
with experiment. We point out that the combined analysis of these two
observables could be used to predict unambiguously new regions where shape
transitions might develop.Comment: 6 pages, 7 figures. To appear in Phys. Rev. C (Rapid Communications
Microscopic description of quadrupole-octupole coupling in Sm and Gd isotopes with the Gogny Energy Density Functional
The interplay between the collective dynamics of the quadrupole and octupole
deformation degree of freedom is discussed in a series of Sm and Gd isotopes
both at the mean field level and beyond, including parity symmetry restoration
and configuration mixing. Physical properties like negative parity excitation
energies, E1 and E3 transition probabilities are discussed and compared to
experimental data. Other relevant intrinsic quantities like dipole moments,
ground state quadrupole moments or correlation energies associated to symmetry
restoration and configuration mixing are discussed. For the considered
isotopes, the quadrupole-octupole coupling is found to be weak and most of the
properties of negative parity states can be described in terms of the octupole
degree of freedom alone.Comment: 31 pages, 11 figure
- …
