109 research outputs found

    A Replisome’s journey through the bacterial chromosome

    Get PDF
    Genome duplication requires the coordinated activity of a multi-component machine, the replisome. In contrast to the background of metabolic diversity across the bacterial domain, the composition and architecture of the bacterial replisome seems to have suffered few changes during evolution. This immutability underlines the replisome’s efficiency in copying the genome. It also highlights the success of various strategies inherent to the replisome for responding to stress and avoiding problems during critical stages of DNA synthesis. Here we summarise current understanding of bacterial replisome architecture and highlight the known variations in different bacterial taxa. We then look at the mechanisms in place to ensure that the bacterial replisome is assembled appropriately on DNA, kept together during elongation, and disassembled upon termination. We put forward the idea that the architecture of the replisome may be more flexible that previously thought and speculate on elements of the replisome that maintain its stability to ensure a safe journey from origin to terminus

    Time-dependent bending rigidity and helical twist of DNA by rearrangement of bound HU protein

    Get PDF
    HU is a protein that plays a role in various bacterial processes including compaction, transcription and replication of the genome. Here, we use atomic force microscopy to study the effect of HU on the stiffness and supercoiling of double-stranded DNA. First, we measured the persistence length, height profile, contour length and bending angle distribution of the DNA–HU complex after different incubation times of HU with linear DNA. We found that the persistence and contour length depend on the incubation time. At high concentrations of HU, DNA molecules first become stiff with a larger value of the persistence length. The persistence length then decreases over time and the molecules regain the flexibility of bare DNA after ~2 h. Concurrently, the contour length shows a slight increase. Second, we measured the change in topology of closed circular relaxed DNA following binding of HU. Here, we observed that HU induces supercoiling over a similar time span as the measured change in persistence length. Our observations can be rationalized in terms of the formation of a nucleoprotein filament followed by a structural rearrangement of the bound HU on DNA. The rearrangement results in a change in topology, an increase in bending flexibility and an increase in contour length through a decrease in helical pitch of the duplex.Singapore-MIT Alliance for Research and Technolog

    Using Fluorescence Recovery After Photobleaching (FRAP) to study dynamics of the Structural Maintenance of Chromosome (SMC) complex in vivo

    Get PDF
    The SMC complex, MukBEF, is important for chromosome organization and segregation in Escherichia coli. Fluorescently tagged MukBEF forms distinct spots (or 'foci') in the cell, where it is thought to carry out most of its chromosome associated activities. This chapter outlines the technique of Fluorescence Recovery After Photobleaching (FRAP) as a method to study the properties of YFP-tagged MukB in fluorescent foci. This method can provide important insight into the dynamics of MukB on DNA and be used to study its biochemical properties in vivo

    An Easy-To-Use Simulation Program Demonstrates Variations in Bacterial Cell Cycle Parameters Depending on Medium and Temperature

    Get PDF
    Many studies are performed on chromosome replication and segregation in Escherichia coli and other bacteria capable of complex replication with C phases spanning several generations. For such investigations an understanding of the replication patterns, including copy numbers of origins and replication forks, is crucial for correct interpretation of the results

    T7 RNA Polymerase Functions In Vitro without Clustering

    Get PDF
    Many nucleic acid polymerases function in clusters known as factories. We investigate whether the RNA polymerase (RNAP) of phage T7 also clusters when active. Using ‘pulldowns’ and fluorescence correlation spectroscopy we find that elongation complexes do not interact in vitro with a Kd<1 µM. Chromosome conformation capture also reveals that genes located 100 kb apart on the E. coli chromosome do not associate more frequently when transcribed by T7 RNAP. We conclude that if clustering does occur in vivo, it must be driven by weak interactions, or mediated by a phage-encoded protein

    A Geometrical Model for DNA Organization in Bacteria

    Get PDF
    Recent experimental studies have revealed that bacteria, such as C. crescentus, show a remarkable spatial ordering of their chromosome. A strong linear correlation has been found between the position of genes on the chromosomal map and their spatial position in the cellular volume. We show that this correlation can be explained by a purely geometrical model. Namely, self-avoidance of DNA, specific positioning of one or few DNA loci (such as origin or terminus) together with the action of DNA compaction proteins (that organize the chromosome into topological domains) are sufficient to get a linear arrangement of the chromosome along the cell axis. We develop a Monte-Carlo method that allows us to test our model numerically and to analyze the dependence of the spatial ordering on various physiologically relevant parameters. We show that the proposed geometrical ordering mechanism is robust and universal (i.e. does not depend on specific bacterial details). The geometrical mechanism should work in all bacteria that have compacted chromosomes with spatially fixed regions. We use our model to make specific and experimentally testable predictions about the spatial arrangement of the chromosome in mutants of C. crescentus and the growth-stage dependent ordering in E. coli

    A Defined Terminal Region of the E. coli Chromosome Shows Late Segregation and High FtsK Activity

    Get PDF
    Background: The FtsK DNA-translocase controls the last steps of chromosome segregation in E. coli. It translocates sister chromosomes using the KOPS DNA motifs to orient its activity, and controls the resolution of dimeric forms of sister chromosomes by XerCD-mediated recombination at the dif site and their decatenation by TopoIV. Methodology: We have used XerCD/dif recombination as a genetic trap to probe the interaction of FtsK with loci located in different regions of the chromosome. This assay revealed that the activity of FtsK is restricted to a,400 kb terminal region of the chromosome around the natural position of the dif site. Preferential interaction with this region required the tethering of FtsK to the division septum via its N-terminal domain as well as its translocation activity. However, the KOPSrecognition activity of FtsK was not required. Displacement of replication termination outside the FtsK high activity region had no effect on FtsK activity and deletion of a part of this region was not compensated by its extension to neighbouring regions. By observing the fate of fluorescent-tagged loci of the ter region, we found that segregation of the FtsK high activity region is delayed compared to that of its adjacent regions. Significance: Our results show that a restricted terminal region of the chromosome is specifically dedicated to the last step

    Cell Size and the Initiation of DNA Replication in Bacteria

    Get PDF
    In eukaryotes, DNA replication is coupled to the cell cycle through the actions of cyclin-dependent kinases and associated factors. In bacteria, the prevailing view, based primarily from work in Escherichia coli, is that growth-dependent accumulation of the highly conserved initiator, DnaA, triggers initiation. However, the timing of initiation is unchanged in Bacillus subtilis mutants that are ∼30% smaller than wild-type cells, indicating that achievement of a particular cell size is not obligatory for initiation. Prompted by this finding, we re-examined the link between cell size and initiation in both E. coli and B. subtilis. Although changes in DNA replication have been shown to alter both E. coli and B. subtilis cell size, the converse (the effect of cell size on DNA replication) has not been explored. Here, we report that the mechanisms responsible for coordinating DNA replication with cell size vary between these two model organisms. In contrast to B. subtilis, small E. coli mutants delayed replication initiation until they achieved the size at which wild-type cells initiate. Modest increases in DnaA alleviated the delay, supporting the view that growth-dependent accumulation of DnaA is the trigger for replication initiation in E. coli. Significantly, although small E. coli and B. subtilis cells both maintained wild-type concentration of DnaA, only the E. coli mutants failed to initiate on time. Thus, rather than the concentration, the total amount of DnaA appears to be more important for initiation timing in E. coli. The difference in behavior of the two bacteria appears to lie in the mechanisms that control the activity of DnaA

    Clamp loader ATPases and the evolution of DNA replication machinery

    Get PDF
    Clamp loaders are pentameric ATPases of the AAA+ family that operate to ensure processive DNA replication. They do so by loading onto DNA the ring-shaped sliding clamps that tether the polymerase to the DNA. Structural and biochemical analysis of clamp loaders has shown how, despite differences in composition across different branches of life, all clamp loaders undergo the same concerted conformational transformations, which generate a binding surface for the open clamp and an internal spiral chamber into which the DNA at the replication fork can slide, triggering ATP hydrolysis, release of the clamp loader, and closure of the clamp round the DNA. We review here the current understanding of the clamp loader mechanism and discuss the implications of the differences between clamp loaders from the different branches of life
    corecore