154 research outputs found

    Planarity of para Hexaphenyl

    Get PDF
    URL:http://link.aps.org/doi/10.1103/PhysRevLett.82.3625 DOI:10.1103/PhysRevLett.82.3625We present experimental and theoretical findings on the geometry of polycrystalline para hexaphenyl via Raman scattering. The planarity of the molecule is affected by hydrostatic pressure and temperature. Our studies indicate that the potential energy curve which governs the torsional motion between neighboring phenyl rings is “W” shaped. We determine the activation energy to promote the molecule from a nonplanar to a planar state to be 0.04 eV, in good agreement with our quantum chemical calculations. From the relative intensities of the 1280cm-1 to the 1220cm-1 Raman modes we show that high pressure planarizes the molecules, modifying the “W”-shaped potential energy curve to a “U”-shaped one.We acknowledge the financial support from U.S. Army Grant No. DAAL03-92-0381, University of Missouri Research Board and Österreichische Nationalbank (Project No. 6608)

    Low-temperature electrical transport and double exchange in La(Pb,Ca)MnO

    Full text link
    The resistivity in the ferromagnetic state of flux-grown La_{2/3}(Pb,Ca)_{1/3}MnO_3 single crystals, measured in magnetic fields up to 7 T, reveals a strong quadratic temperature dependence at and above 50 K. At lower temperatures, this contribution drops precipitously leaving the resistivity essentially temperature independent below 20 K. The Seebeck coefficient also reflects a change of regime at the same temperature. We attribute this behavior to a cut-off of single magnon scattering processes at long wavelengths due to the polarized bands of a double-exchange ferromagnet.Comment: 10 pages, TeX, 4 figures. Revised version. Submitte

    Magneto-Transport Properties of Doped RuSr2_2GdCu2_2O8_8

    Get PDF
    RuSr2_2GdCu2_2O8_8, in which magnetic order and superconductivity coexist with TMagneticT_{Magnetic}\ggTcT_c, is a complex material which poses new and important questions to our understanding of the interplay between magnetic and superconducting (SC) order. Resistivity, Hall effect and thermopower measurements on sintered ceramic RuSr2_2GdCu2_2O8_8 are presented, together with results on a broad range of substituted analogues. The Hall effect and thermopower both show anomalous decreases below TMagneticT_{Magnetic} which may be explained within a simple two-band model by a transition from localized to more itinerant behavior in the RuO2_2 layer at TMagneticT_{Magnetic}.Comment: 10 pages, 7 figures, submitted to Phys. Rev. B., correspondence to [email protected]

    Evidence for the immobile bipolaron formation in the paramagnetic state of the magnetoresistive manganites

    Full text link
    Recent research suggests that the charge carriers in the paramagnetic state of the magnetoresistive manganites are small polarons. Here we report studies of the oxygen-isotope effects on the intrinsic resistivity and thermoelectric power in several ferromagnetic manganites. The precise measurements of these isotope effects allow us to make a quantitative data analysis. Our results do not support a simple small-polaron model, but rather provide compelling evidence for the presence of small immobile bipolarons, i.e., pairs of small polarons. Since the bipolarons in the manganites are immobile, the present result alone appears not to give a positive support to the bipolaronic superconductivity theory for the copper-based perovskites.Comment: 6 pages, 5 figures, monor correction

    The entangled triplet pair state in acene and heteroacene materials

    Get PDF
    Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg–Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.The authors thank the G8 Research Councils Initiative on Multilateral Research Funding (EPSRC EP/K025651; US National Science Foundation CMM1-1255494; Japanese Society for the Promotion of Science), JC thanks the University of Sheffield for a VC fellowship. AJM and SLB thank EPSRC (EP/M01083X and EP/M025330). The work in Mons is supported by BELSPO through the PAI P6/27 Functional Supramolecular Systems project and by the Belgian National Fund for Scientific Research FNRS/F.R.S. DB is a Research Director of FNRS

    Crystallographic and morphological characterization of thin pentacene films on polycrystalline copper surfaces

    Get PDF
    The degree of crystallinity, the structure and orientation of crystallites, and the morphology of thin pentacene films grown by vapor deposition in an ultrahigh vacuum environment on polycrystalline copper substrates have been investigated by x-ray diffraction and tapping-mode scanning force microscopy (TM-SFM). Depending on the substrate temperature during deposition, very different results are obtained: While at 77 K a long-range order is missing, the films become crystalline at elevated temperatures. From a high-resolution x-ray-diffraction profile analysis, the volume-weighted size of the crystallites perpendicular to the film surface could be determined. This size of the crystallites increases strongly upon changing temperature between room temperature and 333 K, at which point the size of individual crystallites typically exceeds 100 nm. In this temperature region, three different polymorphs are identified. The vast majority of crystallites have a fiber texture with the (001) net planes parallel to the substrate. In this geometry, the molecules are oriented standing up on the substrate (end-on arrangement). This alignment is remarkably different from that on single-crystalline metal surfaces, indicating that the growth is not epitaxial. Additionally, TM-SFM images show needlelike structures which suggest the presence of at least one additional orientation of crystallites (flat-on or edge-on). These results indicate that properties of thin crystalline pentacene films prepared on technologically relevant polycrystalline metal substrates for fast electronic applications may be compromised by the simultaneous presence of different local molecular aggregation states at all temperatures
    corecore