477 research outputs found

    Training-induced criticality in martensites

    Full text link
    We propose an explanation for the self-organization towards criticality observed in martensites during the cyclic process known as `training'. The scale-free behavior originates from the interplay between the reversible phase transformation and the concurrent activity of lattice defects. The basis of the model is a continuous dynamical system on a rugged energy landscape, which in the quasi-static limit reduces to a sandpile automaton. We reproduce all the principal observations in thermally driven martensites, including power-law statistics, hysteresis shakedown, asymmetric signal shapes, and correlated disorder.Comment: 5 pages, 4 figure

    Towards the knowledge-based design of universal influenza epitope ensemble vaccines

    Get PDF
    Motivation: Influenza A viral heterogeneity remains a significant threat due to unpredictable antigenic drift in seasonal influenza and antigenic shifts caused by the emergence of novel subtypes. Annual review of multivalent influenza vaccines targets strains of influenza A and B likely to be predominant in future influenza seasons. This does not induce broad, cross protective immunity against emergent subtypes. Better strategies are needed to prevent future pandemics. Cross-protection can be achieved by activating CD8+ and CD4+ T cells against highly-conserved regions of the influenza genome. We combine available experimental data with informatics-based immunological predictions to help design vaccines potentially able to induce cross-protective T-cells against multiple influenza subtypes. Results: To exemplify our approach we designed two epitope ensemble vaccines comprising highly-conserved and experimentally-verified immunogenic influenza A epitopes as putative non-seasonal influenza vaccines; one specifically targets the US population and the other is a universal vaccine. The USA-specific vaccine comprised 6 CD8+ T cell epitopes (GILGFVFTL, FMYSDFHFI, GMDPRMCSL, SVKEKDMTK, FYIQMCTEL, DTVNRTHQY) and 3 CD4+ epitopes (KGILGFVFTLTVPSE, EYIMKGVYINTALLN, ILGFVFTLTVPSERG). The universal vaccine comprised 8 CD8+ epitopes: (FMYSDFHFI, GILGFVFTL, ILRGSVAHK, FYIQMCTEL, ILKGKFQTA, YYLEKANKI, VSDGGPNLY, YSHGTGTGY) and the same 3 CD4+ epitopes. Our USA-specific vaccine has a population protection coverage (portion of the population potentially responsive to one or more component epitopes of the vaccine, PPC) of over 96% and 95% coverage of observed influenza subtypes. The universal vaccine has a PPC value of over 97% and 88% coverage of observed subtypes

    Modelling avalanches in martensites

    Full text link
    Solids subject to continuous changes of temperature or mechanical load often exhibit discontinuous avalanche-like responses. For instance, avalanche dynamics have been observed during plastic deformation, fracture, domain switching in ferroic materials or martensitic transformations. The statistical analysis of avalanches reveals a very complex scenario with a distinctive lack of characteristic scales. Much effort has been devoted in the last decades to understand the origin and ubiquity of scale-free behaviour in solids and many other systems. This chapter reviews some efforts to understand the characteristics of avalanches in martensites through mathematical modelling.Comment: Chapter in the book "Avalanches in Functional Materials and Geophysics", edited by E. K. H. Salje, A. Saxena, and A. Planes. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-45612-6_

    Stable, metastable and unstable states in the mean-field RFIM at T=0

    Full text link
    We compute the probability of finding metastable states at a given field in the mean-field random field Ising model at T=0. Remarkably, this probability is finite in the thermodynamic limit, even on the so-called ``unstable'' branch of the magnetization curve. This implies that the branch is reachable when the magnetization is controlled instead of the magnetic field, in contrast with the situation in the pure system.Comment: 10 pages, 3 figure

    Contribution of dust inputs to dissolved organic carbon and water transparency in Mediterranean reservoirs

    Get PDF
    The Mediterranean reservoirs receive frequent atmospheric Saharan dust inputs with soil-derived organic components mostly during the stratification periods, when run-off inputs are particularly limited. Here, we quantified and optically characterized the water-soluble organic carbon (WSOC) of the (dry and wet) atmospheric deposition in collectors placed near three reservoirs from the western Mediterranean Basin. In addition, we determined the WSOC contribution to the pool of dissolved organic carbon (DOC) in the reservoirs and the influence of dust-derived chromophoric organic components on the water transparency during their stratification periods. We found synchronous dynamics in the WSOC atmospheric inputs among the three collectors and in the DOC concentrations among the three reservoirs. The DOC concentrations and the WSOC atmospheric inputs were positive and significantly correlated in the most oligotrophic reservoir (Quéntar) and in the reservoir with the highest ratio of surface area to mixing water depth (Cubillas). Despite these correlations, WSOC atmospheric inputs represented less than 10% of the total DOC pool, suggesting that indirect effects of dust inputs on reservoir DOC may also promote these synchronous patterns observed in the reservoirs. Chromophoric components from dust inputs can significantly reduce the water transparency to the ultraviolet radiation (UVR). The depths where UVR at λ = 320 nm was reduced to ten percent of surface intensity (Z10%) decreased 27 cm in Béznar, 49 cm in Cubillas, and 69 cm in Quéntar due to the dust inputs. Therefore, the increasing dust export to the atmosphere may have consequences for the water transparency of aquatic ecosystems located under the influence of the global dust belt.This work was funded by the Spanish Ministry of Science and Technology (DISPAR, CGL2005-00076 to IR and CGL2008-06101/BOS to IdV) and by the Spanish Ministry of Education and Science (CICYT grant REN2003-03038 to RM-B)
    • 

    corecore