537 research outputs found
Interplay of superconductivity and magnetism in strong coupling
A model is introduced describing the interplay between superconductivity and
spin-ordering. It is characterized by on-site repulsive electron-electron
interactions, causing antiferromagnetism, and nearest-neighbor attractive
interactions, giving rise to d-wave superconductivity. Due to a special choice
for the lattice, this model has a strong-coupling limit where the
superconductivity can be described by a bosonic theory, similar to the strongly
coupled negative U Hubbard model. This limit is analyzed in the present paper.
A rich mean-field phase diagram is found and the leading quantum corrections to
the mean-field results are calculated. The first-order line between the
antiferromagnetic- and the superconducting phase is found to terminate at a
tricritical point, where two second-order lines originate. At these lines, the
system undergoes a transition to- and from a phase exhibiting both
antiferromagnetic order and superconductivity. At finite temperatures above the
spin-disordering line, quantum-critical behavior is found. For specific values
of the model parameters, it is possible to obtain SO(5) symmetry involving the
spin- and the phase-sector at the tricritical point. Although this symmetry is
explicitly broken by the projection to the lower Hubbard band, it survives on
the mean-field level, and modes related to a spontaneously broken SO(5)
symmetry are present on the level of the random phase approximation in the
superconducting phase.Comment: 16 pages Revtex, 5 figure
Nonthermal Emission from a Supernova Remnant in a Molecular Cloud
In evolved supernova remnants (SNRs) interacting with molecular clouds, such
as IC 443, W44, and 3C391, a highly inhomogeneous structure consisting of a
forward shock of moderate Mach number, a cooling layer, a dense radiative shell
and an interior region filled with hot tenuous plasma is expected. We present a
kinetic model of nonthermal electron injection, acceleration and propagation in
that environment and find that these SNRs are efficient electron accelerators
and sources of hard X- and gamma-ray emission. The energy spectrum of the
nonthermal electrons is shaped by the joint action of first and second order
Fermi acceleration in a turbulent plasma with substantial Coulomb losses.
Bremsstrahlung, synchrotron, and inverse Compton radiation of the nonthermal
electrons produce multiwavelength photon spectra in quantitative agreement with
the radio and the hard emission observed by ASCA and EGRET from IC 443. We
distinguish interclump shock wave emission from molecular clump shock wave
emission accounting for a complex structure of molecular cloud. Spatially
resolved X- and gamma- ray spectra from the supernova remnants IC 443, W44, and
3C391 as might be observed with BeppoSAX, Chandra XRO, XMM, INTEGRAL and GLAST
would distinguish the contribution of the energetic lepton component to the
gamma-rays observed by EGRET.Comment: 14 pages, 4 figure, Astrophysical Journal, v.538, 2000 (in press
Quantum magnetism in the stripe phase: bond- versus site order
It is argued that the spin dynamics in the charge-ordered stripe phase might
be revealing with regards to the nature of the anomalous spin dynamics in
cuprate superconductors. Specifically, if the stripes are bond ordered much of
the spin fluctuation will originate in the spin sector itself, while site
ordered stripes require the charge sector as the driving force for the strong
quantum spin fluctuations.Comment: 4 pages, 3 figures, LaTe
Gamma-Ray Emission from Two Blazars Behind the Galactic Plane: B2013+370 & B2023+336
B2013+370 and B2023+336 are two blazars at low-galactic latitude that were
previously proposed to be the counterparts for the EGRET unidentified sources,
3EG J2016+3657 and 3EG J2027+3429. Gamma-ray emission associated with the EGRET
sources has been detected by the Fermi Gamma-ray Space Telescope, and the two
sources, 1FGL J2015.7+3708 and 1FGL J2027.6+3335, have been classified as
unidentified in the 1-year catalog. This analysis of the Fermi-LAT data
collected during 31 months reveals that the 1FGL sources are spatially
compatible with the blazars, and are significantly variable, supporting the
hypothesis of extragalactic origin for the gamma-ray emission. The gamma-ray
light curves are compared with 15 GHz radio light curves from the 40-m
telescope at the Owens Valley Radio Observatory (OVRO). Simultaneous
variability is seen in both bands for the two blazar candidates. The study is
completed with the X-ray analysis of 1FGL J2015.7+3708 using Swift observations
that were triggered in August 2010 by a Fermi-detected flare. The resulting
spectral energy distribution shows a two-component structure typical of
blazars. We also identify a second source in the field of view of 1FGL
J2027.6+3335 with similar characteristics to the known LAT pulsars. This study
gives solid evidence favoring blazar counterparts for these two unidentified
EGRET and Fermi sources, supporting the hypothesis that a number of
unidentified gamma-ray sources at low galactic latitudes are indeed of
extragalactic origin.Comment: 10 pages, 7 figures, 6 tables, accepted for publication in The
Astrophysical Journa
3EG J2016+3657: Confirming an EGRET Blazar Behind the Galactic Plane
We recently identified the blazar-like radio source G74.87+1.22 (B2013+370)
as the counterpart of the high-energy gamma-ray source 3EG J2016+3657 in the
Galactic plane. However, since most blazar identifications of EGRET sources are
only probabilistic in quality even at high Galactic latitude, and since there
also exists a population of unidentified Galactic EGRET sources, we sought to
obtain additional evidence to support our assertion that 3EG J2016+3657 is a
blazar. These new observations consist of a complete set of classifications for
the 14 brightest ROSAT X-ray sources in the error circle, of which B2013+370
remains the most likely source of the gamma-rays. We also obtained further
optical photometry of B2013+370 itself which shows that it is variable,
providing additional evidence of its blazar nature. Interestingly, this field
contains, in addition to the blazar, the plerionic supernova remnant CTB 87,
which is too distant to be the EGRET source, and three newly discovered
cataclysmic variables, all five of these X-ray sources falling within 16' of
each other. This illustrates the daunting problem of obtaining complete
identifications of EGRET sources in the Galactic plane.Comment: 16 pages, 6 figures, accepted for publication in The Astrophysical
Journa
Insights into hydroxyl measurements and atmospheric oxidation in a California forest
The understanding of oxidation in forest atmospheres is being challenged by measurements of unexpectedly large amounts of hydroxyl (OH). A significant number of these OH measurements were made by laser-induced fluorescence in low-pressure detection chambers (called Fluorescence Assay with Gas Expansion (FAGE)) using the Penn State Ground-based Tropospheric Hydrogen Oxides Sensor (GTHOS). We deployed a new chemical removal method to measure OH in parallel with the traditional FAGE method in a California forest. The new method gives on average only 40–60% of the OH from the traditional method and this discrepancy is temperature dependent. Evidence indicates that the new method measures atmospheric OH while the traditional method is affected by internally generated OH, possibly from oxidation of biogenic volatile organic compounds. The improved agreement between OH measured by this new technique and modeled OH suggests that oxidation chemistry in at least one forest atmosphere is better understood than previously thought
63Cu NQR evidence of dimensional crossover to anisotropic 2d regime in S= 1/2 three-leg ladder Sr2Cu3O5
We probed spin-spin correlations up to 725 K with 63Cu NQR in the S= 1/2
three-leg ladder Sr2Cu3O5. We present experimental evidence that below 300 K,
weak inter-ladder coupling causes dimensional crossover of the spin-spin
correlation length \xi from quasi-1d (\xi ~ 1/T) to anisotropic 2d regime (\xi
\~ exp[2\pi\rho_{s}/T], where 2\pi\rho_{s} = 290 +/- 30 K is the effective spin
stiffness). This is the first experimental verification of the renormalized
classical behavior of the anisotropic non-linear sigma model in 2d, which has
been recently proposed for the striped phase in high T_{c} cuprates.Comment: 4 pages, 3 figure
A high-resolution radio survey of the Vela supernova remnant
This paper presents a high-resolution radio continuum (843 MHz) survey of the
Vela supernova remnant. The contrast between the structures in the central
pulsar-powered nebula of the remnant and the synchrotron radiation shell allows
the remnant to be identified morphologically as a member of the composite
class. The data are the first of a composite remnant at spatial scales
comparable with those available for the Cygnus Loop and the Crab Nebula, and
make possible a comparison of radio, optical and soft X-ray emission from the
resolved shell filaments. The survey, made with the Molonglo Observatory
Synthesis Telescope, covers an area of 50 square degrees at a resolution of
43'' x 60'', while imaging structures on scales up to 30'.Comment: 18 pages, 7 jpg figures (version with ps figures at
http://astro.berkeley.edu/~dbock/papers/); AJ, in pres
- …