784 research outputs found

    Statistical properties of thermodynamically predicted RNA secondary structures in viral genomes

    Full text link
    By performing a comprehensive study on 1832 segments of 1212 complete genomes of viruses, we show that in viral genomes the hairpin structures of thermodynamically predicted RNA secondary structures are more abundant than expected under a simple random null hypothesis. The detected hairpin structures of RNA secondary structures are present both in coding and in noncoding regions for the four groups of viruses categorized as dsDNA, dsRNA, ssDNA and ssRNA. For all groups hairpin structures of RNA secondary structures are detected more frequently than expected for a random null hypothesis in noncoding rather than in coding regions. However, potential RNA secondary structures are also present in coding regions of dsDNA group. In fact we detect evolutionary conserved RNA secondary structures in conserved coding and noncoding regions of a large set of complete genomes of dsDNA herpesviruses.Comment: 9 pages, 2 figure

    The PETfold and PETcofold web servers for intra- and intermolecular structures of multiple RNA sequences

    Get PDF
    The function of non-coding RNA genes largely depends on their secondary structure and the interaction with other molecules. Thus, an accurate prediction of secondary structure and RNA–RNA interaction is essential for the understanding of biological roles and pathways associated with a specific RNA gene. We present web servers to analyze multiple RNA sequences for common RNA structure and for RNA interaction sites. The web servers are based on the recent PET (Probabilistic Evolutionary and Thermodynamic) models PETfold and PETcofold, but add user friendly features ranging from a graphical layer to interactive usage of the predictors. Additionally, the web servers provide direct access to annotated RNA alignments, such as the Rfam 10.0 database and multiple alignments of 16 vertebrate genomes with human. The web servers are freely available at: http://rth.dk/resources/petfold

    Parental supply of alcohol and alcohol consumption in adolescence: prospective cohort study

    Get PDF
    Background: Parents are a major supplier of alcohol to adolescents, yet there is limited research examining the impact of this on adolescent alcohol use. This study investigates associations between parental supply of alcohol, supply from other sources, and adolescent drinking, adjusting for child, parent, family and peer variables. Method: A cohort of 1927 adolescents was surveyed annually from 2010 to 2014. Measures include: consumption of whole drinks; binge drinking (>4 standard drinks on any occasion); parental supply of alcohol; supply from other sources; child, parent, family and peer covariates. Results: After adjustment, adolescents supplied alcohol by parents had higher odds of drinking whole beverages [odds ratio (OR) 1.80, 95% confidence interval (CI) 1.33–2.45] than those not supplied by parents. However, parental supply was not associated with bingeing, and those supplied alcohol by parents typically consumed fewer drinks per occasion (incidence rate ratio 0.86, 95% CI 0.77–0.96) than adolescents supplied only from other sources. Adolescents obtaining alcohol from non-parental sources had increased odds of drinking whole beverages (OR 2.53, 95% CI 1.86–3.45) and bingeing (OR 3.51, 95% CI 2.53–4.87). Conclusions: Parental supply of alcohol to adolescents was associated with increased risk of drinking, but not bingeing. These parentally-supplied children also consumed fewer drinks on a typical drinking occasion. Adolescents supplied alcohol from non-parental sources had greater odds of drinking and bingeing. Further follow-up is necessary to determine whether these patterns continue, and to examine alcohol-related harm trajectories. Parents should be advised that supply of alcohol may increase children's drinking

    Global analysis of the mammalian RNA degradome reveals widespread miRNA-dependent and miRNA-independent endonucleolytic cleavage

    Get PDF
    The Ago2 component of the RNA-induced silencing complex (RISC) is an endonuclease that cleaves mRNAs that base pair with high complementarity to RISC-bound microRNAs. Many examples of such direct cleavage have been identified in plants, but not in vertebrates, despite the conservation of catalytic capacity in vertebrate Ago2. We performed parallel analysis of RNA ends (PAREs), a deep sequencing approach that identifies 5′-phosphorylated, polyadenylated RNAs, to detect potential microRNA-directed mRNA cleavages in mouse embryo and adult tissues. We found that numerous mRNAs are potentially targeted for cleavage by endogenous microRNAs, but at very low levels relative to the mRNA abundance, apart from miR-151-5p-guided cleavage of the N4BP1 mRNA. We also find numerous examples of non-miRNA-directed cleavage, including cleavage of a group of mRNAs within a CA-repeat consensus sequence. The PARE analysis also identified many examples of adenylated small non-coding RNAs, including microRNAs, tRNA processing intermediates and various other small RNAs, consistent with adenylation being part of a widespread proof-reading and/or degradation pathway for small RNAs

    Buprenorphine versus dihydrocodeine for opiate detoxification in primary care: a randomised controlled trial

    Get PDF
    Background Many drug users present to primary care requesting detoxification from illicit opiates. There are a number of detoxification agents but no recommended drug of choice. The purpose of this study is to compare buprenorphine with dihydrocodeine for detoxification from illicit opiates in primary care. Methods Open label randomised controlled trial in NHS Primary Care (General Practices), Leeds, UK. Sixty consenting adults using illicit opiates received either daily sublingual buprenorphine or daily oral dihydrocodeine. Reducing regimens for both interventions were at the discretion of prescribing doctor within a standard regimen of not more than 15 days. Primary outcome was abstinence from illicit opiates at final prescription as indicated by a urine sample. Secondary outcomes during detoxification period and at three and six months post detoxification were recorded. Results Only 23% completed the prescribed course of detoxification medication and gave a urine sample on collection of their final prescription. Risk of non-completion of detoxification was reduced if allocated buprenorphine (68% vs 88%, RR 0.58 CI 0.35–0.96, p = 0.065). A higher proportion of people allocated to buprenorphine provided a clean urine sample compared with those who received dihydrocodeine (21% vs 3%, RR 2.06 CI 1.33–3.21, p = 0.028). People allocated to buprenorphine had fewer visits to professional carers during detoxification and more were abstinent at three months (10 vs 4, RR 1.55 CI 0.96–2.52) and six months post detoxification (7 vs 3, RR 1.45 CI 0.84–2.49). Conclusion Informative randomised trials evaluating routine care within the primary care setting are possible amongst drug using populations. This small study generates unique data on commonly used treatment regimens

    The Human Mitochondrial Transcriptome

    Get PDF
    SummaryThe human mitochondrial genome comprises a distinct genetic system transcribed as precursor polycistronic transcripts that are subsequently cleaved to generate individual mRNAs, tRNAs, and rRNAs. Here, we provide a comprehensive analysis of the human mitochondrial transcriptome across multiple cell lines and tissues. Using directional deep sequencing and parallel analysis of RNA ends, we demonstrate wide variation in mitochondrial transcript abundance and precisely resolve transcript processing and maturation events. We identify previously undescribed transcripts, including small RNAs, and observe the enrichment of several nuclear RNAs in mitochondria. Using high-throughput in vivo DNaseI footprinting, we establish the global profile of DNA-binding protein occupancy across the mitochondrial genome at single-nucleotide resolution, revealing regulatory features at mitochondrial transcription initiation sites and functional insights into disease-associated variants. This integrated analysis of the mitochondrial transcriptome reveals unexpected complexity in the regulation, expression, and processing of mitochondrial RNA and provides a resource for future studies of mitochondrial function (accessed at http://mitochondria.matticklab.com)

    Exploiting Oxytricha trifallax nanochromosomes to screen for non-coding RNA genes

    Get PDF
    We took advantage of the unusual genomic organization of the ciliate Oxytricha trifallax to screen for eukaryotic non-coding RNA (ncRNA) genes. Ciliates have two types of nuclei: a germ line micronucleus that is usually transcriptionally inactive, and a somatic macronucleus that contains a reduced, fragmented and rearranged genome that expresses all genes required for growth and asexual reproduction. In some ciliates including Oxytricha, the macronuclear genome is particularly extreme, consisting of thousands of tiny ‘nanochromosomes’, each of which usually contains only a single gene. Because the organism itself identifies and isolates most of its genes on single-gene nanochromosomes, nanochromosome structure could facilitate the discovery of unusual genes or gene classes, such as ncRNA genes. Using a draft Oxytricha genome assembly and a custom-written protein-coding genefinding program, we identified a subset of nanochromosomes that lack any detectable protein-coding gene, thereby strongly enriching for nanochromosomes that carry ncRNA genes. We found only a small proportion of non-coding nanochromosomes, suggesting that Oxytricha has few independent ncRNA genes besides homologs of already known RNAs. Other than new members of known ncRNA classes including C/D and H/ACA snoRNAs, our screen identified one new family of small RNA genes, named the Arisong RNAs, which share some of the features of small nuclear RNAs

    Using routinely collected data to understand and predict adverse outcomes in opioid agonist treatment:Protocol for the Opioid Agonist Treatment Safety (OATS) Study

    Get PDF
    INTRODUCTION: North America is amid an opioid use epidemic. Opioid agonist treatment (OAT) effectively reduces extramedical opioid use and related harms. As with all pharmacological treatments, there are risks associated with OAT, including fatal overdose. There is a need to better understand risk for adverse outcomes during and after OAT, and for innovative approaches to identifying people at greatest risk of adverse outcomes. The Opioid Agonist Treatment and Safety study aims to address these questions so as to inform the expansion of OAT in the USA. METHODS AND ANALYSIS: This is a retrospective cohort study using linked, routinely collected health data for all people seeking OAT in New South Wales, Australia, between 2001 and 2017. Linked data include hospitalisation, emergency department presentation, mental health diagnoses, incarceration and mortality. We will use standard regression techniques to model the magnitude and risk factors for adverse outcomes (eg, mortality, unplanned hospitalisation and emergency department presentation, and unplanned treatment cessation) during and after OAT, and machine learning approaches to develop a risk-prediction model. ETHICS AND DISSEMINATION: This study has been approved by the Population and Health Services Research Ethics Committee (2018HRE0205). Results will be reported in accordance with the REporting of studies Conducted using Observational Routinely-collected health Data statement

    Nuclear Organization and Dynamics of 7SK RNA in Regulating Gene Expression

    Get PDF
    We have identified 7SK RNA to be enriched in nuclear speckles. Knock-down of 7SK results in the mislocalization of nuclear speckle constituents, and the transcriptional up-regulation of a reporter gene locus. 7SK RNA transiently associates with the locus upon transcriptional down-regulation correlating with the displacement of pTEF-b
    corecore