76 research outputs found

    Genomic diversity and differentiation of a managed island wild boar population

    Get PDF
    The evolution of island populations in natural systems is driven by local adaptation and genetic drift. However, evolutionary pathways may be altered by humans in several ways. The wild boar (WB) (Sus scrofa) is an iconic game species occurring in several islands, where it has been strongly managed since prehistoric times. We examined genomic diversity at 49 803 single-nucleotide polymorphisms in 99 Sardinian WBs and compared them with 196 wild specimens from mainland Europe and 105 domestic pigs (DP; 11 breeds). High levels of genetic variation were observed in Sardinia (80.9% of the total number of polymorphisms), which can be only in part associated to recent genetic introgression. Both Principal Component Analysis and Bayesian clustering approach revealed that the Sardinian WB population is highly differentiated from the other European populations (F ST =0.126-0.138), and from DP (F ST =0.169). Such evidences were mostly unaffected by an uneven sample size, although clustering results in reference populations changed when the number of individuals was standardized. Runs of homozygosity (ROHs) pattern and distribution in Sardinian WB are consistent with a past expansion following a bottleneck (small ROHs) and recent population substructuring (highly homozygous individuals). The observed effect of a non-random selection of Sardinian individuals on diversity, F ST and ROH estimates, stressed the importance of sampling design in the study of structured or introgressed populations. Our results support the heterogeneity and distinctiveness of the Sardinian population and prompt further investigations on its origins and conservation status.</p

    Integrative QTL mapping and selection signatures in Groningen White Headed cattle inferred from whole-genome sequences

    Get PDF
    Here, we aimed to identify and characterize genomic regions that differ between Groningen White Headed (GWH) breed and other cattle, and in particular to identify candidate genes associated with coat color and/or eye-protective phenotypes. Firstly, whole genome sequences of 170 animals from eight breeds were used to evaluate the genetic structure of the GWH in relation to other cattle breeds by carrying out principal components and model-based clustering analyses. Secondly, the candidate genomic regions were identified by integrating the findings from: a) a genome-wide association study using GWH, other white headed breeds (Hereford and Simmental), and breeds with a non-white headed phenotype (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel, Dutch Belted, and Holstein Friesian); b) scans for specific signatures of selection in GWH cattle by comparison with four other Dutch traditional breeds (Dutch Friesian, Deep Red, Meuse-Rhine-Yssel and Dutch Belted) and the commercial Holstein Friesian; and c) detection of candidate genes identified via these approaches. The alignment of the filtered reads to the reference genome (ARS-UCD1.2) resulted in a mean depth of coverage of 8.7X. After variant calling, the lowest number of breed-specific variants was detected in Holstein Friesian (148,213), and the largest in Deep Red (558,909). By integrating the results, we identified five genomic regions under selection on BTA4 (70.2–71.3 Mb), BTA5 (10.0–19.7 Mb), BTA20 (10.0–19.9 and 20.0–22.7 Mb), and BTA25 (0.5–9.2 Mb). These regions contain positional and functional candidate genes associated with retinal degeneration (e.g., CWC27 and CLUAP1), ultraviolet protection (e.g., ERCC8), and pigmentation (e.g. PDE4D) which are probably associated with the GWH specific pigmentation and/or eye-protective phenotypes, e.g. Ambilateral Circumocular Pigmentation (ACOP). Our results will assist in characterizing the molecular basis of GWH phenotypes and the biological implications of its adaptation

    Third Report on Chicken Genes and Chromosomes 2015

    Get PDF
    Following on from the First Report on Chicken Genes and Chromosomes [Schmid et al., 2000] and the Second Report in 2005 [Schmid et al., 2005], we are pleased to publish this long-awaited Third Report on the latest developments in chicken genomics. The First Report highlighted the availability of genetic and physical maps, while the Second Report was published as the chicken genome sequence was released. This report comes at a time of huge technological advances (particularly in sequencing methodologies) which have allowed us to examine the chicken genome in detail not possible until now. This has also heralded an explosion in avian genomics, with the current availability of more than 48 bird genomes [Zhang G et al., 2014b; Eöry et al., 2015], with many more planned

    Porcine colonization of the Americas: a 60k SNP story

    Get PDF
    The pig, Sus scrofa, is a foreign species to the American continent. Although pigs originally introduced in the Americas should be related to those from the Iberian Peninsula and Canary islands, the phylogeny of current creole pigs that now populate the continent is likely to be very complex. Because of the extreme climates that America harbors, these populations also provide a unique example of a fast evolutionary phenomenon of adaptation. Here, we provide a genome wide study of these issues by genotyping, with a 60k SNP chip, 206 village pigs sampled across 14 countries and 183 pigs from outgroup breeds that are potential founders of the American populations, including wild boar, Iberian, international and Chinese breeds. Results show that American village pigs are primarily of European ancestry, although the observed genetic landscape is that of a complex conglomerate. There was no correlation between genetic and geographical distances, neither continent wide nor when analyzing specific areas. Most populations showed a clear admixed structure where the Iberian pig was not necessarily the main component, illustrating how international breeds, but also Chinese pigs, have contributed to extant genetic composition of American village pigs. We also observe that many genes related to the cardiovascular system show an increased differentiation between altiplano and genetically related pigs living near sea level.WBP is funded by COLCIENCIAS (Francisco José de Caldas fellowship 497/2009, Colombia), CAS thanks grants from CAPES and EMBRAPA (Brazil), YRC is recipient of a PhD studentship from MICINN (Spain, ref. AP2008-01450), AEC is recipient of a PhD studentship from MICINN (Spain). Work funded by Consolider CSD2007-00036 ‘Center for Research in Agrigenomics’ and AGL2010-14822 grants (Spain) to MPE, EU SABRE project FOOD-CT-2006-01625, USDA project 2007-04315 (USA), Facultad de Ciencias Agrarias, San Pedro (UNA), Unión de Gremios de la Producción (UGP) and Empresa San Rafael Agricola y Ganadera SRL (Paraguay), Universidad Técnica de Oruro (Bolivia), Programa de Conservación de los Bancos de Germoplasma, Instituto Colombiano Agropecuario (grant 048-2011) and Ministerio de Agricultura y Desarrollo Rural (Colombia), and Centro de Validación de Tecnologías Agropecuarias (CEDEVA, Formosa, Argentina).Peer reviewe

    A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms

    Get PDF
    We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms ( SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds ( a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines - in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases

    Multi-Platform Next-Generation Sequencing of the Domestic Turkey (Meleagris gallopavo): Genome Assembly and Analysis

    Get PDF
    The combined application of next-generation sequencing platforms has provided an economical approach to unlocking the potential of the turkey genome

    Evolutionary signals of selection on cognition from the great tit genome and methylome

    Get PDF
    For over 50 years, the great tit (Parus major) has been a model species for research in evolutionary, ecological and behavioural research; in particular, learning and cognition have been intensively studied. Here, to provide further insight into the molecular mechanisms behind these important traits, we de novo assemble a great tit reference genome and whole-genome re-sequence another 29 individuals from across Europe. We show an overrepresentation of genes related to neuronal functions, learning and cognition in regions under positive selection, as well as increased CpG methylation in these regions. In addition, great tit neuronal non-CpG methylation patterns are very similar to those observed in mammals, suggesting a universal role in neuronal epigenetic regulation which can affect learning-, memory- and experience-induced plasticity. The high-quality great tit genome assembly will play an instrumental role in furthering the integration of ecological, evolutionary, behavioural and genomic approaches in this model species.</p
    corecore