287 research outputs found

    A formula for the number of tilings of an octagon by rhombi

    Get PDF
    We propose the first algebraic determinantal formula to enumerate tilings of a centro-symmetric octagon of any size by rhombi. This result uses the Gessel-Viennot technique and generalizes to any octagon a formula given by Elnitsky in a special case.Comment: New title. Minor improvements. To appear in Theoretical Computer Science, special issue on "Combinatorics of the Discrete Plane and Tilings

    Entanglement in a second order quantum phase transition

    Full text link
    We consider a system of mutually interacting spin 1/2 embedded in a transverse magnetic field which undergo a second order quantum phase transition. We analyze the entanglement properties and the spin squeezing of the ground state and show that, contrarily to the one-dimensional case, a cusp-like singularity appears at the critical point λc\lambda_c, in the thermodynamic limit. We also show that there exists a value λ0λc\lambda_0 \geq \lambda_c above which the ground state is not spin squeezed despite a nonvanishing concurrence.Comment: 4 pages, 4 EPS figures, minor corrections added and title change

    Geometry of entangled states, Bloch spheres and Hopf fibrations

    Get PDF
    We discuss a generalization to 2 qubits of the standard Bloch sphere representation for a single qubit, in the framework of Hopf fibrations of high dimensional spheres by lower dimensional spheres. The single qubit Hilbert space is the 3-dimensional sphere S3. The S2 base space of a suitably oriented S3 Hopf fibration is nothing but the Bloch sphere, while the circular fibres represent the qubit overall phase degree of freedom. For the two qubits case, the Hilbert space is a 7-dimensional sphere S7, which also allows for a Hopf fibration, with S3 fibres and a S4 base. A main striking result is that suitably oriented S7 Hopf fibrations are entanglement sensitive. The relation with the standard Schmidt decomposition is also discussedComment: submitted to J. Phys.

    Arctic octahedron in three-dimensional rhombus tilings and related integer solid partitions

    Full text link
    Three-dimensional integer partitions provide a convenient representation of codimension-one three-dimensional random rhombus tilings. Calculating the entropy for such a model is a notoriously difficult problem. We apply transition matrix Monte Carlo simulations to evaluate their entropy with high precision. We consider both free- and fixed-boundary tilings. Our results suggest that the ratio of free- and fixed-boundary entropies is σfree/σfixed=3/2\sigma_{free}/\sigma_{fixed}=3/2, and can be interpreted as the ratio of the volumes of two simple, nested, polyhedra. This finding supports a conjecture by Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in three-dimensional random tilings

    Two-dimensional random tilings of large codimension: new progress

    Full text link
    Two-dimensional random tilings of rhombi can be seen as projections of two-dimensional membranes embedded in hypercubic lattices of higher dimensional spaces. Here, we consider tilings projected from a DD-dimensional space. We study the limiting case, when the quantity DD, and therefore the number of different species of tiles, become large. We had previously demonstrated [ICQ6] that, in this limit, the thermodynamic properties of the tiling become independent of the boundary conditions. The exact value of the limiting entropy and finite DD corrections remain open questions. Here, we develop a mean-field theory, which uses an iterative description of the tilings based on an analogy with avoiding oriented walks on a random tiling. We compare the quantities so-obtained with numerical calculations. We also discuss the role of spatial correlations.Comment: Proceedings of the 7th International Conference on Quasicrystals (ICQ7, Stuttgart), 4 pages, 4 figure

    Density of states of tight-binding models in the hyperbolic plane

    Full text link
    We study the energy spectrum of tight-binding Hamiltonian for regular hyperbolic tilings. More specifically, we compute the density of states using the continued-fraction expansion of the Green function on finite-size systems with more than 10910^9 sites and open boundary conditions. The coefficients of this expansion are found to quickly converge so that the thermodynamical limit can be inferred quite accurately. This density of states is in stark contrast with the prediction stemming from the recently proposed hyperbolic band theory. Thus, we conclude that the fraction of the energy spectrum described by the hyperbolic Bloch-like wave eigenfunctions vanishes in the thermodynamical limit.Comment: 12 pages, 7 figure

    Aperiodic Quantum Random Walks

    Full text link
    We generalize the quantum random walk protocol for a particle in a one-dimensional chain, by using several types of biased quantum coins, arranged in aperiodic sequences, in a manner that leads to a rich variety of possible wave function evolutions. Quasiperiodic sequences, following the Fibonacci prescription, are of particular interest, leading to a sub-ballistic wavefunction spreading. In contrast, random sequences leads to diffusive spreading, similar to the classical random walk behaviour. We also describe how to experimentally implement these aperiodic sequences.Comment: 4 pages and 4 figure

    Phase diagram of an extended quantum dimer model on the hexagonal lattice

    Get PDF
    We introduce a quantum dimer model on the hexagonal lattice that, in addition to the standard three-dimer kinetic and potential terms, includes a competing potential part counting dimer-free hexagons. The zero-temperature phase diagram is studied by means of quantum Monte Carlo simulations, supplemented by variational arguments. It reveals some new crystalline phases and a cascade of transitions with rapidly changing flux (tilt in the height language). We analyze perturbatively the vicinity of the Rokhsar-Kivelson point, showing that this model has the microscopic ingredients needed for the "devil's staircase" scenario [E. Fradkin et al., Phys. Rev. B 69, 224415 (2004)], and is therefore expected to produce fractal variations of the ground-state flux.Comment: Published version. 5 pages + 8 (Supplemental Material), 31 references, 10 color figure

    Generalized quasiperiodic Rauzy tilings

    Full text link
    We present a geometrical description of new canonical dd-dimensional codimension one quasiperiodic tilings based on generalized Fibonacci sequences. These tilings are made up of rhombi in 2d and rhombohedra in 3d as the usual Penrose and icosahedral tilings. Thanks to a natural indexing of the sites according to their local environment, we easily write down, for any approximant, the sites coordinates, the connectivity matrix and we compute the structure factor.Comment: 11 pages, 3 EPS figures, final version with minor change
    corecore