Three-dimensional integer partitions provide a convenient representation of
codimension-one three-dimensional random rhombus tilings. Calculating the
entropy for such a model is a notoriously difficult problem. We apply
transition matrix Monte Carlo simulations to evaluate their entropy with high
precision. We consider both free- and fixed-boundary tilings. Our results
suggest that the ratio of free- and fixed-boundary entropies is
σfree/σfixed=3/2, and can be interpreted as the ratio of the
volumes of two simple, nested, polyhedra. This finding supports a conjecture by
Linde, Moore and Nordahl concerning the ``arctic octahedron phenomenon'' in
three-dimensional random tilings