146 research outputs found

    Progression of Wave Breaker Types on a Plane Impermeable Slope, Depending on Experimental Design

    Get PDF
    M. V. Moragues was supported by the research group TEP-209 (Junta de Andalucia) and by the following projects: "Protection of coastal urban fronts against global warming-PROTOCOL" (917PTE0538), "Integrated verification of the hydrodynamic and structural behavior of a breakwater and its implications on the investment project-VIVALDI" (BIA2015-65598-P). This work was funded by the projects PCI2019-103565-SUSME and PID2019-107509GB-I00-ROMPEOLAS (SRA (State Research Agency)/10.13039/501100011033). M. A. Losada was partially funded by the emeritus professorship mentoring program of the University of Granada. We would like to thank the three reviewers for providing helpful comments on earlier drafts of the manuscript.The objective of this research was to analyze the progression of breaker types on plane impermeable slopes. This study used dimensional analysis to demonstrate the relative water depth is a key explanatory quantity. The dominant breaker types depend on the incident wave characteristics at the foot of the slope. Accordingly, it is possible to combine values of H, T, and m. The physical experiments of Galvin, recent numerical results, and new experiments, performed on an impermeable 1:10 slope, were used to verify the result. It was thus possible to obtain the progression of breaker types in different sequences of pairs of combined wave H and T values. Once a sequence is defined, the expected progression of breaker types is predictable, and is well approximated by the log-transform of the alternate similarity parameter. Since the classification of breaker types is discontinuous, the data assigned to each type were placed in horizontal lines, based on the value of log(chi). Given that the breaking of a wave train on a slope should be considered a continuous process, the location of some data was corrected to satisfy this assumption. There is thus a functional relationship between the sets of the experimental space and of the breaker types. This research also derives the non-dimensional energy dissipation on the slope, considering the wave-reflected energy flux on the slope. It is proportional to a dimensionless bulk dissipation coefficient which depends on the breaker type and, therefore, on the value of chi at the toe of the slope.Junta de Andalucia 917PTE0538 BIA2015-65598-Pemeritus professorship mentoring program of the University of GranadaPCI2019-103565-SUSMEPID2019-107509GB-I00-ROMPEOLAS10.13039/50110001103

    An upper limit on hypertriton production in collisions of Ar(1.76 AGeV)+KCl

    Full text link
    A high-statistic data sample of Ar(1.76 AGeV)+KCl events recorded with HADES is used to search for a hypertriton signal. An upper production limit per centrality-triggered event of 1.041.04 x 10310^{-3} on the 3σ3\sigma level is derived. Comparing this value with the number of successfully reconstructed Λ\Lambda hyperons allows to determine an upper limit on the ratio NΛ3H/NΛN_{_{\Lambda}^3H}/N_{\Lambda}, which is confronted with statistical and coalescence-type model calculations

    Wolf Rock lighthouse: past developments and future survivability under wave loading

    Get PDF
    Lighthouses situated on exposed rocky outcrops warn mariners of the dangers that lurk beneath the waves. They were first constructed when approaches to wave loading and structural response were relatively unsophisticated, essentially learning from previous failures. Here, we chart the evolution of lighthouses on the Wolf Rock, situated between Land's End and the Isles of Scilly in the UK. The first empirical approaches are described, followed by design aspects of the present tower, informed by innovations developed on other rocky outcrops. We focus on a particular development associated with the automation of lighthouses: the helideck platform. The design concept is described and the structure then scrutinized for future survivability, using the latest structural modelling techniques of the entire lighthouse and helideck. Model validation data were obtained through a complex logistical field operation and experimental modal analysis. Extreme wave loading for the model required the identification of the 250-year return period wave using a Bayesian method with informative prior distributions, for two different scenarios (2017 and 2067). The structural models predict responses of the helideck to wave loading which is characterized by differential displacements of 0.093m (2017) and 0.115m (2067) with associated high tension forces and plastic strain.</p

    Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages

    Get PDF
    Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed
    corecore