387 research outputs found
Recommended from our members
Transient cavitation and friction-induced heating effects of diesel fuel during the needle valve early opening stages for discharge pressures up to 450 mpa
An investigation of the fuel heating, vapor formation, and cavitation erosion location patterns inside a five-hole common rail diesel fuel injector, occurring during the early opening period of the needle valve (from 2 µm to 80 µm), discharging at pressures of up to 450 MPa, is presented. Numerical simulations were performed using the explicit density-based solver of the compressible Navier–Stokes (NS) and energy conservation equations. The flow solver was combined with tabulated property data for a four-component diesel fuel surrogate, derived from the perturbed chain statistical associating fluid theory (PC-SAFT) equation of state (EoS), which allowed for a significant amount of the fuel’s physical and transport properties to be quantified. The Wall Adapting Local Eddy viscosity (WALE) Large Eddy Simulation (LES) model was used to resolve sub-grid scale turbulence, while a cell-based mesh deformation arbitrary Lagrangian–Eulerian (ALE) formulation was used for modelling the injector’s needle valve movement. Friction-induced heating was found to increase significantly when decreasing the pressure. At the same time, the Joule–Thomson cooling effect was calculated for up to 25 degrees K for the local fuel temperature drop relative to the fuel’s feed temperature. The extreme injection pressures induced fuel jet velocities in the order of 1100 m/s, affecting the formation of coherent vortical flow structures into the nozzle’s sac volume
Recommended from our members
Evaluation of friction heating in cavitating high pressure Diesel injector nozzles
Variation of fuel properties occurring during extreme fuel pressurisation in Diesel fuel injectors relative to those under atmospheric pressure and room temperature conditions may affect significantly fuel delivery, fuel injection temperature, injector durability and thus engine performance. Indicative results of flow simulations during the full injection event of a Diesel injector are presented. In addition to the Navier-Stokes equations, the enthalpy conservation equation is considered for predicting the fuel temperature. Cavitation is simulated using an Eulerian-Lagrangian cavitation model fully coupled with the flow equations. Compressible bubble dynamics based on the R-P equation also consider thermal effects. Variable fuel properties function of the local pressure and temperature are taken from literature and correspond to a reference so-called summer Diesel fuel. Fuel pressurisation up to 3000bar pressure is considered while various wall temperature boundary conditions are tested in order to compare their effect relative to those of the fuel heating caused during the depressurisation of the fuel as it passes through the injection orifices. The results indicate formation of strong temperature gradients inside the fuel injector while heating resulting from the extreme friction may result to local temperatures above the fuel's boiling point. Predictions indicate bulk fuel temperature increase of more than 100°C during the opening phase of the needle valve. Overall, it is concluded that such effects are significant for the injector performance and should be considered in relevant simulation tools
Recommended from our members
String cavitation formation inside fuel injectors
The formation of vortex or 'string' cavitation has been visualised at pressures up to 2000 bar in an automotive-sized optical diesel fuel injector nozzle. The multi-hole nozzle geometry studied allowed observation of the hole-to-hole vortex interaction and, in particular, that of a bridging vortex in the sac region between the holes. Above a threshold Reynolds number, their formation and appearance during a 2 ms injection event was repeatable and independent of upstream pressure and cavitation number. In addition, two different hole layouts and threedimensional flow simulations have been employed to describe how, the relative positions of adjacent holes influenced the formation and hole-to-hole interaction of the observed string cavitation vortices, with good agreement between the experimental and simulation results being achieved
Towards an understanding of the Of?p star HD 191612: optical spectroscopy
We present extensive optical spectroscopy of the early-type magnetic star HD
191612 (O6.5f?pe-O8fp). The Balmer and HeI lines show strongly variable
emission which is highly reproducible on a well-determined 538-d period. Metal
lines and HeII absorptions (including many selective emission lines but
excluding He II 4686A emission) are essentially constant in line strength, but
are variable in velocity, establishing a double-lined binary orbit with P(orb)
= 1542d, e=0.45. We conduct a model-atmosphere analysis of the primary, and
find that the system is consistent with a O8: giant with a B1: main-sequence
secondary. Since the periodic 538-d changes are unrelated to orbital motion,
rotational modulation of a magnetically constrained plasma is strongly favoured
as the most likely underlying `clock'. An upper limit on the equatorial
rotation is consistent with this hypothesis, but is too weak to provide a
strong constraint.Comment: Accepted for MNRA
Recommended from our members
On the formation of string cavitation inside fuel injectors
The formation of vortex or ‘string’ cavitation has been visualised in the flow upstream of the injection hole inlet of an automotive-sized optical diesel fuel injector nozzle operating at pressures up to 2,000 bar. Three different nozzle geometries and three-dimensional flow simulations have been employed to describe how, for two adjacent nozzle holes, their relative positions influenced the formation and hole-to-hole interaction of the observed string cavitation vortices. Each hole was shown to contain two counter-rotating vortices: the first extending upstream on axis with the nozzle hole into the nozzle sac volume and the second forming a single ‘bridging’ string linked to the adjacent hole. Steady-state and transient fuel injection conditions were shown to produce significantly different nozzle-flow characteristics with regard to the formation and interaction of these vortices in the geometries tested, with good agreement between the experimental and simulation results being achieved. The study further confirms that the visualised vortices do not cavitate themselves but act as carriers of gas-phase components within the injector flow
Understanding service users’ and therapists’ experiences of pharmacological treatment for sexual preoccupation and/or hypersexuality in incarcerated sex offenders
This research comprises two qualitative studies understanding the experiences of 1) convicted sex offenders voluntarily receiving pharmacological treatment to reduce sexual preoccupation and 2) therapists working with these offenders. The studies form part of a research programme evaluating the use of pharmacological treatment with sexual offenders. In study one, semi-structured interviews were conducted with 13 sexual offenders receiving selective serotonin reuptake inhibitors (SSRIs). In study two, interviews were conducted with eight intervention staff with varying levels of experience of working with offenders taking anti-libidinals. Thematic analysis was used and in study one, two main themes emerged: (i) the impact of the pharmacological treatment on prisoners’ daily functioning; (ii) barriers to compliance/engagement. In study two, three main themes emerged: (i) offenders’ reluctance to engage with pharmacological treatment; (ii) challenges for therapists; (iii) pharmacology: ‘just another piece of the puzzle’. Findings are discussed in relation to practice and future research
- …