68 research outputs found
efficiency and safety of human reproductive cell tissue vitrification
Vitrification is a cryopreservation technique increasingly applied in clinical practice for cells and tissue. This review article focuses mainly on the efficiency of vitrification of human reproductive cells and tissue, by analysing the clinical results reported in the literature. The second aspect discussed is safety of vitrification procedure. Different procedures and different types of carriers can be used, and in some cases vitrification requires a direct contact between cell/tissue/carrier and liquid nitrogen; this causes concern regarding the safety of this cryopreservation technique. Although the risk of contamination during cryopreservation remains negligible, this article explains how to overcome the hypothetical risk of contamination when using different types of vitrification carriers, in order to satisfy all existing directives
FedCohesion: Federated Identity Management in the Marche Region
Federated identity management is a set of technologies and processes supporting dynamically distribute identity information. Its adoption in Public Administrations maintains organizations autonomy giving at the same time citizens support to access the services that are distributed across security domains.
In this paper, we propose the Marche Region experience for what concern federate identity management focusing on the regional authentication framework, named FedCohesion. It is bases on Security Assertion Markup Language standard and it results from Cohesion re-engineering. It is the old style legacy authentication framework. We first present resulting architecture showing supported identification process and pilot applications. Lessons learned and opportunities have been also presented
Recommended from our members
Oocyte, embryo and blastocyst cryopreservation in ART: systematic review and meta-analysis comparing slow-freezing versus vitrification to produce evidence for the development of global guidance
Abstract BACKGROUND Successful cryopreservation of oocytes and embryos is essential not only to maximize the safety and efficacy of ovarian stimulation cycles in an IVF treatment, but also to enable fertility preservation. Two cryopreservation methods are routinely used: slow-freezing or vitrification. Slow-freezing allows for freezing to occur at a sufficiently slow rate to permit adequate cellular dehydration while minimizing intracellular ice formation. Vitrification allows the solidification of the cell(s) and of the extracellular milieu into a glass-like state without the formation of ice. OBJECTIVE AND RATIONALE The objective of our study was to provide a systematic review and meta-analysis of clinical outcomes following slow-freezing/thawing versus vitrification/warming of oocytes and embryos and to inform the development of World Health Organization guidance on the most effective cryopreservation method. SEARCH METHODS A Medline search was performed from 1966 to 1 August 2016 using the following search terms: (Oocyte(s) [tiab] OR (Pronuclear[tiab] OR Embryo[tiab] OR Blastocyst[tiab]) AND (vitrification[tiab] OR freezing[tiab] OR freeze[tiab]) AND (pregnancy[tiab] OR birth[tiab] OR clinical[tiab]). Queries were limited to those involving humans. RCTs and cohort studies that were published in full-length were considered eligible. Each reference was reviewed for relevance and only primary evidence and relevant articles from the bibliographies of included articles were considered. References were included if they reported cryosurvival rate, clinical pregnancy rate (CPR), live-birth rate (LBR) or delivery rate for slow-frozen or vitrified human oocytes or embryos. A meta-analysis was performed using a random effects model to calculate relative risk ratios (RR) and 95% CI. OUTCOMES One RCT study comparing slow-freezing versus vitrification of oocytes was included. Vitrification was associated with increased ongoing CPR per cycle (RR = 2.81, 95% CI: 1.05–7.51; P = 0.039; 48 and 30 cycles, respectively, per transfer (RR = 1.81, 95% CI 0.71–4.67; P = 0.214; 47 and 19 transfers) and per warmed/thawed oocyte (RR = 1.14, 95% CI: 1.02–1.28; P = 0.018; 260 and 238 oocytes). One RCT comparing vitrification versus fresh oocytes was analysed. In vitrification and fresh cycles, respectively, no evidence for a difference in ongoing CPR per randomized woman (RR = 1.03, 95% CI: 0.87–1.21; P = 0.744, 300 women in each group), per cycle (RR = 1.01, 95% CI: 0.86–1.18; P = 0.934; 267 versus 259 cycles) and per oocyte utilized (RR = 1.02, 95% CI: 0.82–1.26; P = 0.873; 3286 versus 3185 oocytes) was reported. Findings were consistent with relevant cohort studies. Of the seven RCTs on embryo cryopreservation identified, three met the inclusion criteria (638 warming/thawing cycles at cleavage and blastocyst stage), none of which involved pronuclear-stage embryos. A higher CPR per cycle was noted with embryo vitrification compared with slow-freezing, though this was of borderline statistical significance (RR = 1.89, 95% CI: 1.00–3.59; P = 0.051; three RCTs; I2 = 71.9%). LBR per cycle was reported by one RCT performed with cleavage-stage embryos and was higher for vitrification (RR = 2.28; 95% CI: 1.17–4.44; P = 0.016; 216 cycles; one RCT). A secondary analysis was performed focusing on embryo cryosurvival rate. Pooled data from seven RCTs (3615 embryos) revealed a significant improvement in embryo cryosurvival following vitrification as compared with slow-freezing (RR = 1.59, 95% CI: 1.30–1.93; P < 0.001; I2 = 93%). WIDER IMPLICATIONS Data from available RCTs suggest that vitrification/warming is superior to slow-freezing/thawing with regard to clinical outcomes (low quality of the evidence) and cryosurvival rates (moderate quality of the evidence) for oocytes, cleavage-stage embryos and blastocysts. The results were confirmed by cohort studies. The improvements obtained with the introduction of vitrification have several important clinical implications in ART. Based on this evidence, in particular regarding cryosurvival rates, laboratories that continue to use slow-freezing should consider transitioning to the use of vitrification for cryopreservation
Association of kidney disease measures with risk of renal function worsening in patients with type 1 diabetes
Background: Albuminuria has been classically considered a marker of kidney damage progression in diabetic patients and it is routinely assessed to monitor kidney function. However, the role of a mild GFR reduction on the development of stage 653 CKD has been less explored in type 1 diabetes mellitus (T1DM) patients. Aim of the present study was to evaluate the prognostic role of kidney disease measures, namely albuminuria and reduced GFR, on the development of stage 653 CKD in a large cohort of patients affected by T1DM. Methods: A total of 4284 patients affected by T1DM followed-up at 76 diabetes centers participating to the Italian Association of Clinical Diabetologists (Associazione Medici Diabetologi, AMD) initiative constitutes the study population. Urinary albumin excretion (ACR) and estimated GFR (eGFR) were retrieved and analyzed. The incidence of stage 653 CKD (eGFR < 60 mL/min/1.73 m2) or eGFR reduction > 30% from baseline was evaluated. Results: The mean estimated GFR was 98 \ub1 17 mL/min/1.73m2 and the proportion of patients with albuminuria was 15.3% (n = 654) at baseline. About 8% (n = 337) of patients developed one of the two renal endpoints during the 4-year follow-up period. Age, albuminuria (micro or macro) and baseline eGFR < 90 ml/min/m2 were independent risk factors for stage 653 CKD and renal function worsening. When compared to patients with eGFR > 90 ml/min/1.73m2 and normoalbuminuria, those with albuminuria at baseline had a 1.69 greater risk of reaching stage 3 CKD, while patients with mild eGFR reduction (i.e. eGFR between 90 and 60 mL/min/1.73 m2) show a 3.81 greater risk that rose to 8.24 for those patients with albuminuria and mild eGFR reduction at baseline. Conclusions: Albuminuria and eGFR reduction represent independent risk factors for incident stage 653 CKD in T1DM patients. The simultaneous occurrence of reduced eGFR and albuminuria have a synergistic effect on renal function worsening
Treatment of multiple wounds of aplasia cutis congenita on the lower limb: A case report
4nononeIntroduction: Aplasia cutis congenita (ACC) is a rare congenital disease, characterised by absence of skin, that can affect different parts of the body. ACC is more frequent on the scalp, but can involve limbs, with partial- or total-thickness loss of skin, with a functional impairment of the joint affected. There is no clear indication for surgical or conservative treatment, therefore, it would be helpful to find scientific support for the optimal treatment strategies. Clinical presentation: We present a case of a newborn female, with six wounds on the inferior limbs, treated with conservative therapy. To prevent infection and promote healing, the defects were kept moist and covered with non-adherent/antimicrobical dressings. Complete wound healing occurred in eight weeks. The duration of follow-up was three years. Results: In this kind of ACC with superficial partial-thickness wounds of the lower limbs, conservative treatment was successful. The same conservative treatment can be proposed for larger or deeper wounds of lower limbs with no involvement of underlying structures, with delayed scar excision after the complete growth of the patient. ACC scar excision could require complex tissue rearrangement, tissue expansion, or skin grafting. Conclusion: In the evaluation for treatment of ACC of inferior limbs, even in cases of total-thickness skin loss, even on joints, the conservative approach could be considered as the first choice.mixedCherubino, M.; Maggiulli, F.; Dibartolo, R.; Valdatta, L.Cherubino, Mario; Maggiulli, Francesca; Dibartolo, R.; Valdatta, Luig
Human blastocyst biopsy and vitrification
Blastocyst biopsy is performed to obtain a reliable genetic diagnosis during IVF cycles with preimplantation genetic testing. Then, the ideal workflow entails a safe and efficient vitrification protocol, due to the turnaround time of the diagnostic techniques and to transfer the selected embryo(s) on a physiological endometrium in a following natural cycle. A biopsy approach encompassing the sequential opening of the zona pellucida and retrieval of 5-10 trophectoderm cells (ideally 7-8) limits both the number of manipulations required and the exposure of the embryo to sub-optimal environmental conditions. After proper training, the technique was reproducible across different operators in terms of timing of biopsy (~8 min, ranging 3-22 min based on the number of embryos to biopsy per dish), conclusive diagnoses obtained (~97.5%) and live birth rates after vitrified-warmed euploid blastocyst transfer (>40%). The survival rate after biopsy, vitrification and warming was as high as 99.8%. The re-expansion rate at 1.5 h from warming was as high as 97%, largely dependent on the timing between biopsy and vitrification (ideally ≤30 min), blastocyst morphological quality and day of biopsy. In general, it is better to vitrify a collapsed blastocyst; therefore, in non-PGT cycles, laser-assisted artificial shrinkage might be performed to induce embryo collapse prior to cryopreservation. The most promising future perspective is the non-invasive analysis of the IVF culture media after blastocyst culture as a putative source of embryonic DNA. However, this potential avant-garde is still under investigation and a reliable protocol yet needs to be defined and validated
- …