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Abstract  
Vitrification is a cryopreservation technique increasingly applied in clinical practice for cells 
and tissue.  This review article focuses mainly on the efficiency of vitrification of human 
reproductive cells and tissue, by analysing the clinical results reported in the literature. The 
second aspect discussed is safety of vitrification procedure. Different procedures and different 
types of carriers can be used, and in some cases vitrification requires a direct contact between 
cell/tissue/carrier and liquid nitrogen; this causes concern regarding the safety of this 
cryopreservation technique. Although the risk of contamination during cryopreservation 
remains negligible, this article explains how to overcome the hypothetical risk of 
contamination when using different types of vitrification carriers, in order to satisfy all 
existing directives.  
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Introduction 
Vitrification is a cryopreservation technique 
increasingly applied in clinical practice for cells 
and tissue. Other review articles in this journal 
have already described the technical details of 
vitrification technique and some of these have 
compared reproductive cell/tissue vitrification 
with slow freezing (Elnahas et al., 2010; 
Rodriguez-Wallberg  et al., 2010; Javed et al., 
2011; Isachenko et al., 2011).  
 
However, the main focus of this review article 
is the efficiency of vitrification of human 
reproductive cells and tissue, by analysing the 
clinical results reported in the literature 
specifically for gametes, embryos and gonadal 
tissue. As a second focus, our paper analyzes 
the risks related to this cryopreservation 
technique, without overlapping the other 
articles regarding the aspects of different 
cryoprotectant solutions, protocols and 
carriers. Since there are concerns regarding 
the safety of vitrification procedures and 
cryostorage, due to the contact of 
cell/tissue/carrier with liquid nitrogen (LN2), 

these aspects are comprehensively discussed 
by the authors.   
 
Key performance indicators 
Since the introduction of vitrification as a 
routine technic in Assisted Reproductive 
Technology (ART) laboratories worldwide, a 
long debate has been generated on websites, 
journals, newsletters, dedicated social forums 
regarding the efficiency of reproductive cell 
vitrification (e.g. embryomail.net, EM Digest, 
Vol 161). This debate basically concerns 
clinical outcomes when using vitrified cells or 
tissue. 
  
Nowadays, all practicing embryologists have 
perceptions of how well reproductive cells and 
tissue should survive vitrification/warming, but 
“well-defined” indicators are needed. Almost all 
the indicators commonly used in reproductive 
cell/tissue vitrification relate to cryosurvival. 
These indicators are measured post-warming, 
evaluating the return of apparently normal 
function or morphological development; these 
can be defined “Vitrification Key Performance 
Indicators” (KPIs). KPIs are generally required 
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for evaluating the introduction of a technique or 
process, as minimum standards for efficiency. 
 
Vitrification KPIs require precise definitions, 
objective and standardised methods for their 
determination. The vitrification KPIs should be 
compared with the performance obtainable 
with fresh cells and should be used in any ART 
laboratory for monitoring ongoing performance 
as part of a quality management system (both 
internal quality control or external quality 
assurance), and for benchmarking and quality 
improvement (The Alpha Consensus meeting 
on Cryopreservation Key Performance 
Indicators (KPIs) and Benchmarks, 2012).  
 
Embryo vitrification 
Cleavage-stage embryos   
The first births from vitrified of human embryos 
were obtained in 1990s (Mukaida et al. 1998; 
Hsieh et al., 1999), and the following decade 
was characterized by various reports regarding 
the efficiency of vitrified cleavage-stage 
embryos using any type of open or closed 
devices (Kuwayama et al., 2005 b, Vajta and 
Nagy 2006). At first, vitrification was shown to 
be efficient in preserving intactness of the 
majority of blastomers but the early studies 
were not completely satisfactory in term of 
survival rate: survival of 79% was reported by 
Mukaida et al. in 1998, then 62.5% by Hsieh et 
al. in 1999 and 49.3% by El-Danasouri and 
Selman in 2001. 
 
During the new century, the increasing skill of 
the pratictioners in this very operator-
dependant cryopreservation technique 
combined with the use of different 
cryoprotectant cocktails and the introduction of 
new devices, allowed them to obtain higher 
survival rates (up to 90-95%) and implantation 
rates comparable to that of fresh embryos 
(Liebermann and Tucker, 2002; Rama Raju et 
al., 2005; 2009; Desai et al., 2007; Nakashima 
et al., 2010; Gvakharia and Adamson, 2011). 
In the light of recent studies, human cleavage- 
stage embryo vitrification is increasingly used 
in ART laboratories. 
 
Blastocysts 
Since vitrification offers some obvious benefits 
versus slow freezing, reports favoring this 
particular rapid freezing technique have 
become more frequent in the literature (Lane et 
al., 1999; Yokota et al., 2001; Mukaida et al., 
2001; 2003; Vanderzwalmen et al., 2003; Van 
Landuyt et al., 2011) indicating that for day 5 
embryos it is equivalent (Liebermann and 
Tucker, 2006) or even better (Stehlik et al., 
2004; Youssry et al., 2008) than slow freezing. 

Several factors are thought to influence 
survival rate after vitrification of blastocysts 
(and slow freezing as well). Most importantly, 
blastocyst morphology will be associated with 
post-warm survival; therefore, only blastocysts 
with good to moderate cell lineages will usually 
be considered for cryostorage (Ebner et al., 
2009). With respect to this, cryosurvival of 
morphologically inconspicuous blastocysts 
may fail if they stem from a cohort of bad day 3 
quality embryos (Vanderzwalmen et al., 2003).  
It also seems to make a difference whether 
blastocysts are vitrified on day 5 or 6 (Mukaida 
et al., 2003). Breaking down their 80% survival 
rate to the actual day of cryopreservation, day 
5 (87%) was superior to day 6 (55%). 
However, it should not be forgotten that as late 
as day 7 a 36% ongoing pregnancy rate can 
be expected (Hiraoka et al., 2008). 
 
The most severe impact has been associated 
with the degree of expansion of the blastocoele 
(Vanderzwalmen et al. 2002; Zech et al., 
2005). It is probable that inadequate 
permeation of the cryoprotectants or a very 
slow cooling rate leads to intra-blastocoelic ice 
formation during freezing, damaging the 
blastocyst. Several authors have suggested 
artificially shrinking this fluid-filled cavity, thus 
minimizing the chances of ice crystal 
formation. Vanderzwalmen et al. (2002) 
achieved artificial shrinkage of the blastocyst 
after pushing a needle into the blastocoele 
cavity until it contracted. By doing so these 
embryologists noted survival rates of up to 
71%. The corresponding implantation rate after 
shrinkage of the blastocoelic cavity was 
significantly improved (12% versus 1%). At 
least in mice this technique did not negatively 
influence DNA integrity (Kader et al., 2010a). 
Other authors (Hiraoka et al., 2004) helped the 
shrinkage with mechanical pipetting using a 
hand-drawn glass pipette slightly smaller in 
diameter than the blastocyst. Alternatively, 
artificial holes in the blastocoele (causing 
shrinkage) could be produced by means of 
laser pulses (Mukaida et al., 2006). However, it 
remains to be discussed, whether these laser-
generated holes are equivalent to those 
openings recommended (Vanderzwalmen et 
al., 2003; Zech et al., 2005) for assisting 
hatching out of the presumably hardened zona 
pellucida. 
 
Although some post-thaw morphological 
predictors of pregnancy have been 
investigated in slow freezing of blastocysts 
(Van den Abbeel et al., 2005; Shu et al., 2008), 
no such data were published for vitrified and 
warmed blastocysts before the publication of 
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the paper of Ebner et al. (2009). These authors 
applied a four-part score to vitrified/warmed 
blastocysts to evaluate if certain morphological 
parameters could serve as predictors of 
implantation, pregnancy, and life birth. Apart 
from a more or less immediate re-expansion, a 
morphological parameter that had been widely 
used before, hatching out of the artificial gap in 
the zona pellucida, cytoplasmic granulation, 
and presence of necrotic foci were controlled 
and correlated to outcome (Ebner et al., 2009). 
The first two parameters were found to be 
positive predictors of life birth, while extensive 
cytoplasmic granulation was identified as a 
negative one.  
 
More morphological details of warmed 
blastocysts were provided by Chatzimeletiou et 
al. (2012) who investigated the effect of aseptic 
vitrification - when using “straw in straw” closed 
carriers (see “vitrification carriers” section) - on 
the cytoskeleton of vitrified blastocyst. These 
authors observed that, despite the high 
survival rate, vitrified/warmed blastocysts 
revealed significantly more abnormally shaped 
spindles than the fresh ones (22% vs. 4%) and 
they concluded that further investigation is 
needed to elucidate any potential effects that 
may be reflected on the chromosomal 
constitution of the developing blastocysts. It is 
questionable whether the same observations 
would have been made using an open 
vitrification system, since ultrastructural data 
from metaphase II oocytes support that open 
systems may cause less damage at certain 
developmental stages (Bonetti et al., 2011). 
However, pretreatment with cytoskeletal 
stabilizers in order to improve blastocyst 
survival after warming obviously does not work 
(Chen et al., 2005).  
 
Changes in equilibration time might have a 
negative impact on DNA integrity as could be 
shown in a mouse model (Kader et al., 2010b). 
However, gene expression was found not to be 
statistically altered in warmed blastocysts 
treated with different vitrification protocols (but 
in slow freezing some 100 genes were up- or 
downregulated) (Larman et al., 2011). 
 
To summarize, vitrification clearly outruns slow 
freezing at blastocyst stage in terms of safety 
and efficacy. Not only that vitrification seems to 
work in “extreme” cases, such as vitrification 
after in vitro maturation of oocytes (Lee et al., 
2007), biopsy (Zhang et al., 2009), zona-free 
(Hiraoka et al., 2007; Shu et al., 2010), or 
previously vitrified blastocysts (Peng et al., 
2011), this method also perfectly works under 
aseptic conditions (Escribá et al., 2008; 

Vanderzwalmen et al., 2009; Kamath et al., 
2011; Van Landuyt et al., 2011a; 2011b). 
Kuwayama et al (2005) compared an open 
(Cryotop) and a “single-straw” closed (CryoTip) 
system in terms of blastocyst survival after 
vitrification and they could not find any 
difference in survival (97% vs. 93%), 
pregnancy (59% vs. 51%), and deliveries (51% 
vs. 48%). The reported neonatal outcome after 
blastocyst vitrification further emphasizes the 
outstanding performance of the vitrification 
technique. A recent review (Wennerholm et al., 
2009) reported the healthy birth of 399 healthy 
children born after various vitrification 
approaches. There were no statistical 
differences in the mean gestational age, birth 
weight, preterm delivery, or congenital birth 
defects as compared with fresh blastocyst 
transfer. The same group also focussed on the 
obstetric outcome (Wikland et al., 2010). 
Interestingly, singletons after transfer of 
vitrified/warmed blastocysts had a significantly 
higher birth weight (3560g) as compared to 
their fresh counterparts (3510g). In addition, 
more singletons born after transfer of fresh 
blastocysts were small for gestational age 
compared with those after vitrified blastocyst 
transfer. In contrast, a higher rate of post-
partum haemorrhage was documented in the 
vitrified group. In addition, Lin et al. (2009) also 
found a shift in sex ratio toward female sex. In 
detail, approximately 66% of the babies were 
female after transfer of vitrified blastocysts. 
This percentage was significantly different from 
the 45% after fresh blastocyst transfer.  
 
Ultimately, it has been postulated that vitrified-
warmed blastocyst transfer cycles may indeed 
yield higher rates of implantation and 
pregnancy compared with fresh day 5 transfers 
(Zhu et al., 2011). This is a unique 
phenomenon for a developmental stage and if 
it holds true it would definitely change our 
embryo transfer strategies.  
 
Zygote  
Several authors have emphasized that zygote 
stage is an optimal developmental phase for 
cryopreserving human embryos (Senn et al., 
2000; Salumets et al., 2003; Surrey et al., 
2010). In detail, Salumets et al. (2003) had a 
double survival rate freezing zygotes (87%) 
compared to day 3 embryos (43%). The same, 
though on a less dramatic scale, also holds 
true for the blastocyst stage (Surrey et al., 
2010). A Swiss group (Senn et al. 2000) found 
a significantly higher cumulative pregnancy 
rate if they transferred fresh embryos and 
cryopreserved all supernumerary zygotes as 
compared to freezing at a later stage (47% vs. 
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28%).  Although the three above mentioned 
papers dealt with slow freezing protocols it 
became evident that this particular single-cell 
stage offered a great potential for 
cryopreservation (Keynezhad et al., 2004). 
With respect to this a zygote is even superior 
to an oocyte, e.g., because of the rather 
sensitive meiotic spindle on day 0. Ghetler and 
co-workers (2005) measured the lipid phase 
transition temperature of oocytes and zygotes 
and based on their data they concluded that 
zygotes showed a higher resistance to chilling 
injury. Apart from the single-cell stage another 
potential benefit involves the fact that zygotes 
will show no partial survival once vitrified and 
warmed. Either the cell is damaged after 
warming or it has survived, as can easily be 
controlled by the first mitotic division  
(Isachenko et al., 2004a; 2008a).  
 
Unlike slow freezing (Senn et al., 2006) 
vitrification seems to change ultrastructure of 
the zygote rather than morphological 
appearance (Isachenko et al., 2004a; 2008a). 
This is especially the case if vitrified zygotes 
are rehydrated directly, e.g. if the warmed 
zygotes were directly expelled to culture 
medium (Isachenko et al., 2004a). Not even a 
single zygote cleaved to 2-cell stage if careful 
rehydration using a graded series of sucrose 
solutions was avoided (compared to >80% if 
this was done). Obviously, the harsh process 
of direct rehydration has a lethal osmotic effect 
with all affected zygotes showing signs of 
disruption of pronuclear membranes as well as 
intracellular organelles. The same authors 
(Isachenko et al, 2008a) subsequently 
examined whether the integrity rate of 
pronuclei after vitrification of zygotes might 
influence future embryo development and 
implantation. The integrity rate after warming 
was grouped into high and low. If pronuclear 
membranes were seen after 10 minutes of 
culture and at least half of the nucleoli could be 
observed, the integrity score was considered 
as being high. Indeed, growth to blastocyst 
stage was significantly increased if pronuclear 
integrity was high (40% vs. 4%). The same 
holds true with respect to outcome, since a 
43% pregnancy rate was observed in terms of 
good prognosis integrity as compared to low 
scores (20%). 
 
As it is valid for most of the rather new 
technologies, case reports on vitrification of 
zygotes were published in series (Jelinkova et 
al., 2002; Selman and El-Danasouri, 2002; 
Kumasako et al. 2005). Even under 
aggravated conditions, such as the presence 
of an artificial gap in the zona pellucida after 

polar body biopsy, unsuspicious development 
to blastocyst stage and live births were 
reported for mice and humans (Isachenko et 
al., 2005a, Naether et al., 2008; Macas et al., 
2008, 2011; Bagis et al., 2010; Vanderzvalmen 
et al. 2012). Interestingly, re-vitrification of 
previously vitrified and warmed 2PN-stages 
turned out to be a feasible option (Yokota et 
al., 2001; Kumasako et al., 2009) although not 
always resulting in pregnancy and live birth 
(Hashimoto et al., 2007).  
 
However, larger studies dealing with 
vitrification of day 1 embryos are scarce. Al-
Hasani et al. (2007) introduced a routine 
vitrification protocol using ethylene glycol and 
DMSO (15% both) in their lab and achieved 
satisfying rates of survival (89%) and 
pregnancy (37% as compared to 10% with 
slow freezing). Variations in method and 
carriers followed in literature. Kuwayama et al 
(2005) demonstrated impressively that 
applying vitrification on day 1 of 
preimplantation development using the 
Cryotop carrier can result in a 100% survival 
rate and a 56% blastulation rate. Similarly 
efficient results were published from the United 
States using the Flexipet denuding pipette as a 
carrier (Liebermann et al., 2002). Utilizing 
open-pulled straws human pronuclear oocytes 
were successfully vitrified in aseptic manner 
(Isachenko et al., 2005b). In this paper similar 
rates of survival and further cleavage were 
observed in an open as well as a closed 
system. A similar approach using sealed pulled 
straws obtained even higher cooling rates 
when the authors worked with liquid nitrogen 
slush (Yavin et al., 2009). 
 
Today, vitrification at zygote stage has passed 
its experimental status and has become a 
routine method in IVF labs (Al-Hasani et al., 
2007). Vitrification of pronuclear oocytes 
seems to be a reliable, safe, and efficient 
technology. Nevertheless, in terms of survival, 
zygote stage seems to be the only 
developmental stage in which vitrification is not 
superior to slow freezing. 
 
Gamete vitrification 
Oocytes 
Although the first success in freezing human 
oocytes was reported by Chen (1986), for 
approximately twenty-five years the overall 
efficiency of oocyte cryopreservation remained 
low, thus hampering widespread application. 
Oocyte cryopreservation may have several 
clinical, logistic and social indications including 
fertility preservation before chemotherapy, 
ovary removal or premature menopause; 
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storage in cases of difficulty with sperm 
collection or inadequate seminal samples; 
cryobanking oocytes for oocyte donation or to 
delay motherhood; and ethical concerns and 
legal restrictions related to embryo 
cryopreservation (Nagy et al., 2009) 
 
In general, during cryopreservation, cells are 
exposed to mechanical, thermal and chemical 
stresses that can cause both transient and 
permanent alterations of the homeostatic state.  
 
Because of its large volume that interferes with 
even distribution of cryoprotective additives 
(CPA) and the sensitive nature of the 
metaphase nucleus, oocyte in the second 
phase of meiotic division (MII oocyte) is more 
sensitive to cryodamage than later embryonic 
stages (Sathananthan 1987, 1988; Friedler et 
al., 1988). 
 
However, in the past decade the efficiency of 
cryopreservation of MII oocytes has 
encountered a significant improvement and the 
vitrification approach has been suggested as a 
realistic and effective solution to the limitations 
related to standard freezing protocols. 
 
Vitrification is an ice-free cryopreservation 
method that induces a glass-like solidification 
with rapid cooling of cells or tissues by 
exposure to high cryoprotectant concentrations 
(40% or more w/w) followed by a single-step 
ultra-rapid cooling to -196°C (Vajta et al., 
2009).  The physical properties of glass 
formation and the chemical aspects of solutes 
required for the design of vitrification of 
biological specimens have been reviewed by 
others (MacFarlane, 1987; Fahy etal., 1987).  
 
 
A key point for a successful application of the 
vitrification approach concerns the choice of an 
appropriate support device. During the years 
different devices have been proposed and 
used, such as traditional plastic 0.25ml 
insemination straws, glass vials, Open-pulled 
straws, Hemi-straws, Cryotops, Cryoloops, 
Cryoleafs and Flexipets. Since a reduced 
volume of solution contributes to complete 
glass formation and enables faster cooling and 
warming rates, vitrification devices have been 
designed in order to carry a minimal volume of 
medium and to maximize surface area for rapid 
heat exchange. 
 
To date, the most popular method for 
vitrification appears to be that one proposed by 
Kuwayama (2005, 2007). The procedure is 
performed at room temperature. The 

equilibration solution is composed by 7.5% EG 
and 7.5% DMSO, whereas the vitrification 
solution contains 15% EG, 15% DMSO and 
0.5M sucrose. Oocytes are gradually 
equilibrated through the exposure to slightly 
increasing CPA concentrations for 10-12 min. 
They are transferred to the vitrification solution 
and incubated for 1 min, then loaded on the 
support (Cryotop) paying attention to 
minimizing the volume of the solution, and 
finally plunged in liquid nitrogen.  
 
While the employment of open systems allows 
for the achievement of extremely high cooling 
and warming rates, it involves the hypothetical 
risk of pathogen contamination due to direct 
contact with non-sterile liquid nitrogen. Closed 
systems are safer for ensuring sterility than 
open system methods, but thermal isolation of 
the samples in closed systems may influence 
negatively the cooling and importantly, 
warming rates, potentially interfering with the 
stability of vitrification. In the ‘open systems’, 
aseptic vitrification can be performed by 
sterilizing liquid nitrogen for the vitrification 
procedure and subsequently cryostoring the 
carriers inside hermetical containers in a sterile 
nitrogen-vapour-phase environment (Vajta et 
al., 1998; Parmegiani et al., 2009). Recently, it 
has been demonstrated that UV-LN2 
sterilization combined with hermetical nitrogen 
vapour cryostorage does not adversely affect 
the developmental competence of vitrified 
oocytes (Parmegiani et al., 2011a). 
 
A significant number of studies have been 
published comparing laboratory and clinical 
outcomes of oocyte vitrification to standard 
freezing by slow cooling. Some authors 
showed rather little differences (Grifo & Noyes, 
2010), but there are several data indicating a 
strong benefit for the vitrification approach 
(Fadini et al., 2009; Cao et al., 2009; Smith et 
al, 2010). The difference in efficacy between 
these procedures may be related to the lower 
impact of vitrification on oocyte physiology as 
compared to slow freezing with an improved 
maintenance of ultrastructure features and 
calcium function in vitrified oocytes (Gualtieri et 
al., 2011). 
 
Moreover, convincing data demonstrated that 
vitrification has rather slight effects on human 
oocytes viability and developmental potential 
and the reliability of this approach has also 
been assured by a direct comparison with 
fresh controls.  Rienzi et al. (2010) showed that 
there were no significant differences in the in 
vitro performance of sibling human oocytes 
that were vitrified or untreated. The overall 
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efficiency of this strategy has been confirmed 
by clinical results, namely pregnancy and 
implantation rates. High cumulative pregnancy 
rates were achieved with transfers of embryos 
derived from fresh and subsequently vitrified 
oocytes in a standard infertility program (Ubaldi 
et al., 2010).  
 
Likewise in oocyte donation programs, 
controlled-randomized clinical trials confirmed 
the effectiveness of oocyte cryo-storage, failing 
to demonstrate the superiority of using fresh 
oocytes with respect to the use of vitrified egg-
banked ones (Cobo et al., 2008, 2010) and 
some studies have underlined the potential 
application of oocyte vitrification in standard 
infertility programs to replace embryo 
cryopreservation (Schoolcraft et al., 2009; 
Rienzi et al., 2010; Ubaldi et al., 2010). 
 
On the basis of the evidence provided by the 
randomized studies available, vitrification may 
be considered a safe and efficient method to 
cryopreserve oocytes (Cobo & Diaz, 2011). An 
observational longitudinal cohort multicentre 
study, involving 2721 warmed human MII 
oocytes, confirmed the safety and efficiency of 
vitrification approach with consistent results 
between centres and predictable delivery rate 
(Rienzi et al., 2102). 
 
Therefore, in light of these scientific published 
evidences, the designation of oocyte 
vitrification as “experimental procedure” should 
be revisited and its application could be 
extended also to wider applications such as 
fertility preservation for both medical and social 
reasons. 
 
Spermatozoa 
Although vitrification is not routinely applied to 
spermatozoa and more evidence is needed in 
this field, this procedure of cryopreservation is 
considered one of the more promising 
emerging technologies in reproductive 
cryobiology. The method is based on the 
cooling of cells by direct immersion in LN2, 
thereby avoiding the formation of large 
intracellular ice crystals (Luyet, 1937).  
 
Since the successful vitrification of frog 
spermatozoa by Luyet and Hodapp in 1938, 
and of fowl spermatozoa 4 years later by 
Shaffner (1942), the vitrification of 
spermatozoa has been considered an 
attractive alternative to conventional slow 
freezing.  
 
However, early attempts at vitrifying 
mammalian spermatozoa using this approach 

resulted in low or null survival (Hoagland and 
Pincus, 1942; Smith, 1961) mostly because, as 
later shown, critical speeds of freezing and 
warming required by the low concentration of 
cryoprotective agent (CPA) tolerated by 
spermatozoa were unachievable at that time. 
In spite of this, in the early 1980s, Rall and 
Fahy (1985) managed to successfully vitrify 
embryos using high CPA concentrations and a 
relatively low speed of cooling and warming, 
and since then, this approach has also been 
applied to spermatozoa (Rall, 1991). At the 
beginning of the century, Isachenko and 
Nawroth both demonstrated the possibility for 
successful vitrification of human spermatozoa 
without permeable cryoprotectants, but using 
1% of human serum albumin as a non-
permeable cryoprotectant (Nawroth et al, 2002; 
Isachenko et al, 2003, 2004b,c, 2005c, 2008b). 
 
Cryoprotectant-free vitrification  
Isachenko et al (2005c) compared three 
different systems to vitrify human sperm and 
also evaluated the motility and viability. They 
evaluated cryoloops, droplets and open pulled 
straws and found that all methods were 
suitable for use in ART. However, they 
suggested that the open-pulled-straw system 
was the better method due to the low potential 
risk of microbiological contamination. 
 
The same group also tested standard plastic 
capillaries which can be supplied by industrial 
manufacturers. The outcome indicated that 
vitrification in capillaries better preserved the 
motility of spermatozoa and the plasma 
membrane integrity compared to conventional 
freezing (Isachenko et al., 2011c, 2012). 
 
Vitrification with cryoprotectant 
Desai et al (2004) reported successful 
cryopreservation of individual human 
spermatozoa with a vitrification cryoloop by 
directly plunging a copper cryoloop loaded with 
sperm suspension into LN2. Microquantities of 
spermatozoa cooled in cryoloops exhibited 
overall motility and viability characteristics 
similar to those of control samples frozen in 
cryovials. Furthermore, individually selected 
spermatozoa which were cryopreserved in 
loops were easily warmed, and post-thaw 
motility was generally good. 
 
Successively, Satirapod et al (2011) used 
“solid surface vitrification” (SSV) and evaluated 
the motility, morphology and DNA integrity of 
sperm. The SSV method is based on a direct 
exposure of spermatozoa mixed with 
cryoprotective agents to a cold metal surface, 
for rapid cooling. The cryo-containers used 
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were cryovials. They concluded that SSV was 
feasible and that the efficiency of the SSV 
method was largely comparable to the 
standard freezing method, with a slight 
advantage in DNA integrity and quality of 
sperm tail. 
 
Endo et al (2011; 2012) compared Cell-
Sleeper and Cryotop carriers to vitrify human 
sperm and evaluated the motility and vitality of 
the recovered sperm after vitrification. Both the 
carriers gave satisfactory results. The main 
difference was that, since Cryotop is an open 
cell-cryopreservation system, the gametes 
were directly exposed to LN2, unlike Cell-
Sleeper, which is a closed system. 
 
Although to date reports dedicated to sperm 
vitrification are rare, some evidence is starting 
to appear. It has been shown that permeable-
cryoprotectant-free vitrification performed only 
with proteins (Nawroth et al, 2002; Isachenko 
et al, 2003, 2004b, c, 2005c) or in combination 
with sucrose (Isachenko et al, 2008, 
2011a,b,c,d; Sanchez et al., 2011) as non-
permeable cryoprotectant, provides a high 
recovery rate of motile cells and effectively 
protects the mitochondrial membrane and the 
DNA integrity of spermatozoa after warming 
(Isachenko et al., 2004b, c; 2008b). In contrast 
to slow conventional freezing, vitrification 
renders redundant the need for special cooling 
programs in addition to permeable 
cryoprotectants. Moreover, it is much faster, 
simpler and more cost-effective, while still 
effectively protecting spermatozoa from cryo-
injuries (Nawroth et al, 2002; Isachenko et al, 
2003, 2004b, c, 2005c, 2008b) and it does not 
require expensive equipment or special cooling 
procedures. 
 
As successful demonstration of this vitrification 
technology, the first case was recently reported 
of a healthy baby born after intrauterine 
insemination of vitrified spermatozoa obtained 
after swim-up from an oligo-astheno- 
zoospermic patient (Sanchez et al, 2011). 
Successively, Isachenko and co-authors 
(2011b) reported two cases of healthy babies, 
born after intracytoplasmic sperm injection 
(ICSI) using motile spermatozoa vitrified 
without permeable cryoprotectants.  
 
To date, there have been few published 
studies on vitrification and the current evidence 
is not enough to support the use of one type of 
vitrification over the other. Isachenko’s data 
are the most important and indicate that 
vitrification with mixture of non-permeable 
cryoprotectants, human serum albumin (HSA) 

and sucrose could significantly enhance 
mitochondrial integrity and prevent capacitation 
and acrosome reaction in cryopreserved 
spermatozoa. Vitrification without permeable 
cryoprotectants is possible and effectively 
protects the crucial physiological parameters of 
the spermatozoa. 
 
Reproductive tissue vitrification 
Ovarian tissue 
While the high effectiveness of vitrification of 
human oocytes has been widely demonstrated, 
few data are still available on the 
cryopreservation of human ovarian tissue. 
Theoretically there are several situations 
where ovarian tissue cryopreservation may 
offer significant advantages compared to other 
strategies of fertility preservation: no ovarian 
stimulation is needed and ovarian tissue can 
be harvested laparoscopically at short notice. It 
does not require the male involvement and 
represents the unique option of fertility 
preservation for pediatric patients.  
 
Despite the promising results, however, 
cryopreservation and auto-transplantation of 
ovarian cortex remains a complex procedure, 
which requires great expertise and specialized 
centers to be performed. 
Before clinical application, the impact of 
different protocols and carrier systems for 
cryopreservation on ovarian tissues 
preservation, mostly adapted from embryo and 
oocyte cryopreservation, has been investigated 
(Hovatta et al., 1996; Newton et al., 1996, 
Rahimi et al., 2003; Li et al., 2007; Isachenko 
et al., 2009; Keros et al., 2009;). 
  
Both slow freezing and vitrification have been 
applied to ovarian tissue cryopreservation, but 
data from comparative studies led to diverging 
conclusions, and underlined the need to 
establish a standardized protocol. Some 
results have indicated (Gandolfi et al. 2006; 
Isachenko et al., 2009), that slow freezing is 
more promising than vitrification.  However, 
animal and human studies showed several 
additional advantages of vitrification technique 
over slow freezing (Kuleshova and Lopata, 
2002; Courbiere et al., 2006) as it does not 
induce apoptosis after warming (Rahimi et al., 
2003; Mazoochi et al., 2008) and allows for a 
better preservation of ovarian stromal cells 
(Wang et al., 2008; Xiao et al., 2010, Keros et 
al., 2009). Moreover, clinical grade closed 
system has recently been developed to 
cryopreserve ovarian tissues avoiding direct 
contact with liquid nitrogen (Sheikhi et al., 
2011). This system was able to efficiently 
preserve the ultrastructure of oocytes, since no 
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differences were observed between non-
vitrified and warmed-vitrified tissue.  
 
In the last decade, clinical application of 
ovarian tissue cryopreservation provided 
encouraging results. Following the first birth 
after autotransplantation of ovarian cortex in 
2004, a total of 40 autotransplantations have 
been reported worldwide and 12 of them 
resulted in births (Donnez et al., 2004; 2011). 
Both spontaneous and assisted conceptions 
have been demonstrated after orthotopic re-
implantation; however, so far no pregnancies 
have been reported after heterotopic 
transplantation of the cryopreserved tissue 
(Oktay et al. 2004).  
 
The hypothesis of malignant contamination of 
the ovarian tissue must also be considered, 
mainly in case of hematological malignancies. 
In vitro oocyte maturation has been proposed 
as an alternative to limit the potential risk to 
reintroduce the original malignant cells. The 
dissection of cortical tissue and vitrification of 
denuded germinal vesicle oocytes and 
cumulus cells has been recommended in order 
to improve the efficiency of the 
cryopreservation technique and to preserve 
enough cumulus cells to allow for later in vitro 
maturation (Silber. 2012). However this 
procedure is still experimental and so far did 
not advance suitably to be considered as a 
therapeutic option.  
  
Testicular tissue 
Cryopreservation of intact testicular tissue is 
difficult due to the loss of cell-cell adhesions, to 
the ice crystal formation caused by the water 
trapped in tubules, and to the different cryo-
biological properties of various cell types (Wald 
et al, 2009). 
 
Keros et al. (2007) identified in slow 
programmed freezing the gold standard for 
cryopreservation of testicular tissue from 
prepubertal boys, showing the best 
maintenance of tissue integrity. The authors 
suggested that the cryoprotectant 
Dimethylsulfoxide (DMSO) preserved tubular 
structure better than glycerol or 1,2-
propanediol in humans (Keros et al., 2005). 
Vitrification of testicular tissue has been the 
subject of a recent investigation by Shaw et al 
(2003). Although testicular tissue has 
traditionally been cryopreserved using slow-
freezing protocols (Kvist et al, 2006; Wyns et 
al, 2008), preliminary data in mice showed 
good short-term survival and proliferation of 
pre-pubertal mouse testicular tissue in culture 
after vitrification (Curaba et al, 2011).  

In 2011, Gouk et al showed in a mouse model 
that vitrification of testicular tissue is superior 
to conventional slow freezing for the 
preservation of post-warming cell viability. 
Curaba et al. (2011) reported a protocol for 
vitrification of pre-pubertal human testicular 
tissue showing survival and proliferation of 
spermatogonia as well as preserved histology 
of spermatogonia and Sertoli cells after 
thawing. Furthermore, Sà et al.(2012) 
observed better results with open-pulled-straw 
vitrification of diploid germ cell suspensions 
compared with slow freezing. These results 
opened new roads for the potential use of 
human testicular diploid germ cell suspensions 
for restoring fertilization. Using spermatogonia 
isolated from human testicular biopsies may 
also provide a new individual strategy for 
fertility restoration and preservation (Conrad et 
al, 2008; Kossack et al, 2009; He et al, 2010, 
Sà et al, 2012). 
 
The cryopreservation of testicular tissue, both 
as fragments or as stem cell suspensions, 
should be offered and performed 
simultaneously for fertility restoration and 
preservation in cases of threatened fertility. 
Optimal amounts of collected material and the 
survival of the diploid germ cells after isolation 
from the testicular tissue are key factors in 
guaranteeing the development of successful 
fertility restoration and preservation techniques 
(Ehmcke and Schlatt, 2008; Schlatt et al, 
2009). Cell sorting is not yet efficient for either 
stem cell enrichment (Gassei et al, 2010) or for 
the depletion of contaminating cells in humans 
(Fujita et al., 2005; Geens et al., 2007).  
 
The group of Sousa have demonstrated the 
first reliable and efficient method of testicular 
diploid germ cell isolation (Sousa et al, 2002; 
Sa ́ et al, 2012), which allowed to obtain diploid 
germ cells from small fragments of testicular 
tissue with a mean viability of 72%. Moreover, 
they also evaluated four different 
cryopreservation protocols (programmed slow 
freezing, method of cryopreservation for 
somatic cell/tissue freezing, conventional 
semen cryopreservation method and 
vitrification using method based on open pulled 
straw) using methodologies available in any 
reproductive center.  
 
The open pulled straws (OPS) vitrification 
protocol  was applied for the first time to 
human testicular diploid germ cells 
suspensions by Cremades et al in 2004, this 
method gave the highest recovery (65%) and 
viability (56% per total recovered cells after 
thawing and 35% per total amount of frozen 
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cells) never reported before. The OPS 
vitrification method can be considered a 
promising approach for vitrification of human 
testicular cell suspensions (Brockbank et al., 
2000, Wyns et al., 2010; Sa et al., 2012).  
 
To date, there are few published studies on 
vitrification for human testicular tissue or cell 
suspensions. Further studies are required on 
cryopreservation of immature testicular cells 
suspensions, in order to determine their 
functional potential and their self-renewal and 
differentiation abilities. Finally, it is important to 
avoid the potential risk of neoplastic cell 
contamination in the testicular grafts, by 
developing new techniques which allow the 
sorting of putative malignant cells in testicular 
germ cell suspensions via specific markers (He 
et al, 2010). 
 
 
Safety of vitrification 
Vitrification carriers 
Vitrification is increasingly applied in clinical 
practice for human reproductive cells. During 
vitrification, the cells/tissue need to be cooled 
and warmed at an extremely rapid rate (Vajta 
et al., 2009). This can be achieved by using 
specific “open carriers” such as Open Pulled 
Straw (Vajta et al.,1998), Cryoloop (Lane et al., 
1999), Hemi-Straw (Vandervoost et al., 2001), 
Cryotop (Kuwayama et al., 2005 a), Cryoleaf 
(Chian et al., 2009), Cryolock (Bernal et al., 
2009), Vitri-inga (Almodin et al., 2010), etc; 
these “open carriers” are generally preferred 
for oocytes (Antinori et al., 2007; Cobo et al., 
2008; Rienzi et al., 2009; Ubaldi et al., 2010; 
Garcia et al., 2011). However, these systems 
cannot avoid the hypothetical risk of 
microorganism contamination during the 
vitrification procedure, if the LN2 is accidentally 
contaminated (Bielanski et al., 2000, 2003). 
 
 
Another option for vitrification is the closed 
carrier based on the “straw-in-straw” mode 
(High Security Vitrification – HSV), designed to 
insulate the inner carrier containing the 
cells/tissue against LN2 during vitrification by 
using a sealed external straw (Kuleshova and 
Shaw, 2000; Isachenko et al., 2005a). This 
system avoids the direct contact between 
specimens and LN2 and also any hypothetical 
risk of contamination and it allows good results 
with zygotes, cleaved embryos, blastocyst and 
ovarian tissue (Liebermann, 2010; Isachenko 
et al., 2005a, 2010). However, the “straw-in 
straw” system causes a reduction in the rate of 
cooling and is not routinely used in clinical 
oocyte cryopreservation.  

As an alternative to straw-in-straw, other types 
of closed systems allow faster rates of cooling, 
such as CryoTip (Kuwayama et al., 2005 b) or 
Cryopette (Keskintepe et al., 2009). These 
closed carriers consist of a very thin straw 
specifically designed to load cells with 
minimum volume of cryoprotectant solution 
and to be hermetically sealed (single-straw 
closed carriers); in this way, direct contact 
between cells and LN2 is avoided. 
Unfortunately, because of their design, these 
systems cannot avoid the transmission of 
micro-organisms in the culture medium during 
the warming procedure, due to the previous 
direct contact during vitrification between the 
external surface of the carrier and the 
accidentally contaminated LN2. This is 
because the contamination of cells occurs at 
37°C, when any cryopreserved micro-organism 
found in the LN2 reactivates after thawing in 
the culture medium. Even though IVF culture 
media are supplemented with antibiotics, some 
micro-organisms may resist the antibiotic and 
infect the culture.  
 
In these circumstances, the bacterial or viral 
particles released in the culture medium may 
attach themselves to the oocyte/embryo zona 
pellucida if this is cracked (Bielanski et al., 
2000; Tedder et al., 1995). Another procedure 
to decontaminate the straw is to quickly wipe 
the carriers with 70% ethanol for disinfection at 
warming (Kuwayama et al., 2005 b). However, 
the de-activation of all microorganisms can be 
obtained only by a 5-minute-contact between 
ethanol and carrier (Sopwith et al., 2002); this 
prolonged contact time can damage human 
cells, which remain inside the carrier in the 
warmed vitrification solution rich in potentially 
toxic cryoprotectants (Fahy et al., 1990). 
Recently, Parmegiani and co-authors have 
proposed a reliable procedure to 
decontaminate frozen human specimens 
before warming.  
 
This procedure consists in washing the 
specimens with sterile LN2 and it has been 
shown to efficiently decontaminate vitrification 
carriers in extreme experimental conditions. 
This procedure could be routinely performed in 
IVF laboratories for safe thawing of human 
specimens which are cryostored in “non-
hermetical” cryo-containers, particularly in the 
case of “open” or “single-straw-closed” 
vitrification systems (Parmegiani et al, in 
press). 
. 
Cryostorage  
Nowadays, human cells and tissues are 
cryostored in LN2 or in nitrogen vapour (NV): 
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this cryostorage is potentially hazardous 
because many pathogens can survive at the 
low temperature of LN2/NV (Russell et al., 
1997; Morris, 2005; Bielanski et al., 2000; 
2003; Bielanski, 2005; 2012, Grout and Morris, 
2009) and may contaminate the frozen cells or 
their carriers/container surface into the 
cryobanks (Tedder et al., 1995; Bielanski et al., 
2000; 2003; Bielanski, 2005; 2012; Criado et 
al., 2011; Grout and Morris, 2009, Parmegiani 
et al., 2011a). 
 
To date, there have been no cases of disease 
transmission by transferred cryopreserved 
human embryos (Pomeroy et al., 2010; 
Bielanski and Vajta, 2009; Bielanski, 2012; 
Cobo et al., 2012); despite this we have no 
specific studies regarding possible negative 
effects of LN2/NV infectious agent 
contamination on the final outcome of IVF 
frozen cycles; since we know that some of 
these microorganisms negatively affect 
gametes and embryonic development at 
warming (Bielanski et al., 2003; Foresta et al., 
2011; Kastrop et al., 2007; Klein et al., 2009 ). 
In addition, vitrification is increasingly used in 
humans and this cryo-procedure appears to be 
riskier than slow freezing due to the direct 
contact between cells/tissue and LN2 required 
for “open systems”. The hypotetical risk of 
culture contamination at warming cannot be 
excluded even when using some “closed 
vitrification systems” (Parmegiani, 2011; 
Parmegiani and Vajta, 2011; Parmegiani et al., 
2011 a).  
 
Some precautions may be routinely used in 
IVF laboratories to minimize the risk of cross-
contamination during cryopreservation. For 
example, cryostorage in hermetically sealed 
containers and the use of a secondary sleeve 
(straw in straw) is recommended for human 
specimens in both vitrification and slow 
freezing (Vajta et al., 1998, Parmegiani et al., 
2009; 2011a; Parmegiani and Rienzi, 2011; 
Bielanski et al., 2012). Periodic cleanings and 
refilling of cryo-dewars with sterile liquid 
nitrogen (SLN2) are additional precautions to 
minimize the potential risk of cross-
contamination; nowadays, certified SLN2 can 
be easily obtained through UV irradiation 
(Parmegiani et al., 2009; 2011b). 
 
Regulations and Quality Assurance 
Hypothetical cell/tissue contamination by 
LN2/NV requires us to guarantee the sterility of 
vitrification procedure, particularly in Europe 
due to the directives on tissue manipulation 
(European Union Tissues and Cells Directive 
EUTCD: 2004/23/EC, 2006/17/EC and 

2006/86/EC). These directives have been 
issued by the European Parliament in order to 
increase the safety and quality of tissues - 
including reproductive cells - processed for 
human re-implantation, through the control of 
equipment, devices and environment. Similar 
regulations will probably be introduced by the 
Food and Drug Administration (FDA) for 
Assisted Reproductive Centres in the United 
States (Pomeroy et al., 2010). Thus, both in 
Europe and potentially in the United States, 
human reproductive cells are treated in the 
same way as other non-reproductive tissues. 
For this reason, even though Pomeroy et al. 
(2010) considered the cross-contamination of 
infectious agents a negligible risk  and the 
majority of cryobiologists and embryologists 
maintain that vitrification with open systems 
using non-sterile LN2 is in practice safe, 
international regulations and Quality 
Assurance require specific procedures in 
embryo/oocyte/ovarian tissue cryopreservation 
in order to avoid any hypothetical 
contamination of human cells due to direct 
contact with accidentally contaminated LN2.  
 
Discussion 
Vitrification has moved from experimental 
stage to a routine practice and is emerging as 
the preferred cryopreservation method for 
human reproductive cells/tissue, especially for 
oocytes, zygotes, cleavage-stage embryos and 
blastocysts.  
 
Regarding the risk of cell/tissue contamination 
through direct contact with LN2/NV, any 
technique preventing hypothetical 
contamination must be welcome. A vitrification 
system which avoids any risk of contamination 
may be useful not only for reproductive 
cells/tissue but, in the future, also for other 
human specimens even including whole 
organs. In current directives worldwide  there 
are no specific indications against direct 
contact between human specimens and 
LN2/NV; for this reason open-system 
vitrification can comply with any existing 
directive, as long as aseptic procedures during 
vitrification-cryostorage-warming are 
established (Parmegiani et al, 2011ab, 
Parmegiani and Rienzi 2011). 
 
 
Although the risk of contamination during 
cryopreservation remains negligible we can 
confidently choose the type of carrier (open or 
closed) best suited to our purposes in the 
knowledge that, when aseptic procedures are 
followed, both systems conform in equal 
measure to any existing directive. 
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