248 research outputs found

    Quantifying change of direction load using positional data from small-sided games in soccer

    Get PDF
    PURPOSE: Quantifying change of direction (COD) load through positional data from small-sided games (SSG) and assess its criterion and construct validity. METHODS: Elite male youth soccer players (n = 25, 16.8 ± 1.3 years) played three SSG (5v5, 5×4 min) with different field dimensions (small [40×30 m], medium [55×38 m], large [70×45 m]). Positional data of the players was obtained with a Local Position Measurement system. COD load (AU) was quantified based on the combination of velocity and change in heading direction. Additionally, total distance covered, running distance, acceleration count, deceleration count, and Rating of Perceived Exertion were measured. Criterion validity was assessed by correlating COD load and the load indicators. Construct validity was determined by testing the differences between the SSG field dimensions. RESULTS: Strong correlations were determined between COD load and total distance covered (r = 0.74, p < .01) and running distance (r = 0.84, p < .01). Middle and large field size resulted in highest COD load (p < .05). CONCLUSION: These results suggest that the COD load measure shows sufficient criterion and construct validity

    New perspectives for eye-sparing treatment strategies in primary uveal melanoma

    Get PDF
    Uveal melanoma is the most common intraocular malignancy and arises from melanocytes in the choroid, ciliary body, or iris. The current eye-sparing treatment options include surgical treatment, plaque brachytherapy, proton beam radiotherapy, stereotactic photon radiotherapy, or photodynamic therapy. However, the efficacy of these methods is still unsatisfactory. This article reviews several possible new treatment options and their potential advantages in treating localized uveal melanoma. These methods may be based on the physical destruction of the cancerous cells by applying ultrasounds. Two examples of such an approach are High-Intensity Focused Ultrasound (HIFU)—a promising technology of thermal destruction of solid tumors located deep under the skin and sonodynamic therapy (SDT) that induces reactive oxygen species. Another approach may be based on improving the penetration of anti-cancer agents into UM cells. The most promising technologies from this group are based on enhancing drug delivery by applying electric current. One such approach is called transcorneal iontophoresis and has already been shown to increase the local concentration of several different therapeutics. Another technique, electrically enhanced chemotherapy, may promote drug delivery from the intercellular space to cells. Finally, new advanced nanoparticles are developed to combine diagnostic imaging and therapy (i.e., theranostics). However, development. these methods More are mostly advanced at an and early targeted stage of preclinical development. studies More and advanced clinical trials and targeted would be preclinical needed to studies introduce and some clinical of trials these would techniques be needed to routine to introduce clinical practice. some of these techniques to routine clinical practice

    A multiscale hybrid model for pro-angiogenic calcium signals in a vascular endothelial cell

    Get PDF
    Cytosolic calcium machinery is one of the principal signaling mechanisms by which endothelial cells (ECs) respond to external stimuli during several biological processes, including vascular progression in both physiological and pathological conditions. Low concentrations of angiogenic factors (such as VEGF) activate in fact complex pathways involving, among others, second messengers arachidonic acid (AA) and nitric oxide (NO), which in turn control the activity of plasma membrane calcium channels. The subsequent increase in the intracellular level of the ion regulates fundamental biophysical properties of ECs (such as elasticity, intrinsic motility, and chemical strength), enhancing their migratory capacity. Previously, a number of continuous models have represented cytosolic calcium dynamics, while EC migration in angiogenesis has been separately approached with discrete, lattice-based techniques. These two components are here integrated and interfaced to provide a multiscale and hybrid Cellular Potts Model (CPM), where the phenomenology of a motile EC is realistically mediated by its calcium-dependent subcellular events. The model, based on a realistic 3-D cell morphology with a nuclear and a cytosolic region, is set with known biochemical and electrophysiological data. In particular, the resulting simulations are able to reproduce and describe the polarization process, typical of stimulated vascular cells, in various experimental conditions.Moreover, by analyzing the mutual interactions between multilevel biochemical and biomechanical aspects, our study investigates ways to inhibit cell migration: such strategies have in fact the potential to result in pharmacological interventions useful to disrupt malignant vascular progressio

    Simulation of Organ Patterning on the Floral Meristem Using a Polar Auxin Transport Model

    Get PDF
    An intriguing phenomenon in plant development is the timing and positioning of lateral organ initiation, which is a fundamental aspect of plant architecture. Although important progress has been made in elucidating the role of auxin transport in the vegetative shoot to explain the phyllotaxis of leaf formation in a spiral fashion, a model study of the role of auxin transport in whorled organ patterning in the expanding floral meristem is not available yet. We present an initial simulation approach to study the mechanisms that are expected to play an important role. Starting point is a confocal imaging study of Arabidopsis floral meristems at consecutive time points during flower development. These images reveal auxin accumulation patterns at the positions of the organs, which strongly suggests that the role of auxin in the floral meristem is similar to the role it plays in the shoot apical meristem. This is the basis for a simulation study of auxin transport through a growing floral meristem, which may answer the question whether auxin transport can in itself be responsible for the typical whorled floral pattern. We combined a cellular growth model for the meristem with a polar auxin transport model. The model predicts that sepals are initiated by auxin maxima arising early during meristem outgrowth. These form a pre-pattern relative to which a series of smaller auxin maxima are positioned, which partially overlap with the anlagen of petals, stamens, and carpels. We adjusted the model parameters corresponding to properties of floral mutants and found that the model predictions agree with the observed mutant patterns. The predicted timing of the primordia outgrowth and the timing and positioning of the sepal primordia show remarkable similarities with a developing flower in nature

    The Value of Early Tumor Size Response to Chemotherapy in Pediatric Rhabdomyosarcoma

    Full text link
    Rhabdomyosarcoma is the most common soft tissue sarcoma in childhood. Results of clinical trials, with three-year event-free and overall survival as primary outcomes, often take 7 to 10 years. Identification of an early surrogate biomarker, predictive for survival, is therefore crucial. We conducted a systematic review to define the prognostic value of early tumor size response in children with IRSG group III rhabdomyosarcoma. The search included MEDLINE/EMBASE from inception to 18 November 2020. In total, six studies were included, describing 2010 patients, and assessed by the Quality in Prognosis Studies (QUIPS) instrument. Four studies found no prognostic value for tumor size response, whereas two studies reported a prognostic effect. In these two studies, the survival rate of patients with progressive disease was not separately analyzed from patients with stable disease, potentially explaining the difference in study outcome. In conclusion, our findings support that early progression of disease is associated with poorer survival, justifying adaptation of therapy. However, in patients with non-progressive disease, there is no evidence that the degree of response is a prognostic marker for survival. Because the vast majority of patients do not have progressive disease, early tumor size response should be reconsidered for assessment of treatment efficacy. Therefore, at present, early surrogate biomarkers for survival are still lacking

    A multiscale spatiotemporal model explains succession in the early infant gut microbiota as a switch from aerobic to anaerobic metabolism

    Get PDF
    The human intestinal microbiome starts to form immediately after birth, and can greatly influence the health of the infant. During the first days facultative anaerobic species generally dominate, followed by a dominance of strictly anaerobic species, particularly Bifidobacterium species. An early transition to Bifidobacterium is associated with health benefits. To study the mechanisms of this transition and its hypothesised relation to oxygen, we introduce a multiscale mathematical model that considers metabolism, spatial bacterial population dynamics and resource sharing. Based on publicly available metabolic network data, the model predicts that differences in oxygen availability explain some of the observed individual variation in succession to anaerobic species. The model also predicts that anaerobic Bifidobacterium species become dominant through metabolizing lactose with a suboptimal yield, but a higher anaerobic growth rate than its competitors. The current work is the first step towards a more comprehensive understanding of the formation of a steady state adult colonic microbiota.Analysis and StochasticsMicrobial BiotechnologyAnimal science

    Recommendations on Surveillance for Differentiated Thyroid Carcinoma in Children with PTEN Hamartoma Tumor Syndrome

    Get PDF
    BACKGROUND: PTEN hamartoma tumor syndrome (PHTS) represents a group of syndromes caused by a mutation in the PTEN gene. Children with a germline PTEN mutation have an increased risk of developing differentiated thyroid carcinoma (DTC). Several guidelines have focused on thyroid surveillance in these children, but studies substantiating these recommendations are lacking. OBJECTIVE: The present study intends to provide the available evidence for a thyroid carcinoma surveillance program in children with PHTS. METHODS: An extensive literature search was performed to identify all studies on DTC in pediatric PHTS patients. Two pediatric cases are presented to illustrate the pros and cons of thyroid carcinoma surveillance. Recommendations for other patient groups at risk for DTC were evaluated. Consensus within the study team on recommendations for children with PHTS was reached by balancing the incidence and behavior of DTC with the pros and cons of thyroid surveillance, and the different surveillance methods. RESULTS: In 5 cohort studies the incidence of DTC in childhood ranged from 4 to 12%. In total 57 cases of DTC and/or benign nodular disease in pediatric PHTS patients were identified, of which 27 had proven DTC, with a median age of 12 years (range 4-17). Follicular thyroid carcinoma (FTC) was diagnosed in 52% of the pediatric DTC patients. No evidence was found for a different clinical behavior of DTC in PHTS patients compared to sporadic DTC. CONCLUSIONS: Children with PHTS are at increased risk for developing DTC, with 4 years being the youngest age reported at presentation and FTC being overrepresented. DTC in pediatric PHTS patients does not seem to be more aggressive than sporadic DTC. RECOMMENDATIONS: Surveillance for DTC in pediatric PHTS patients seems justified, as early diagnosis may decrease morbidity. Consensus within the study team was reached to recommend surveillance from the age of 10 years onwards, since at that age the incidence of DTC seems to reach 5%. Surveillance for DTC should consist of yearly neck palpation and triennial thyroid ultrasound. Surveillance in children with PHTS should be performed in a center of excellence for pediatric thyroid disease or PHTS

    Treatment-related mortality in children with cancer:Prevalence and risk factors

    Get PDF
    Aim: Intensive treatment regimens have contributed to a marked increase in childhood cancer survival rates. Death due to treatment-related adverse effects becomes an increasingly important area to further improve overall survival. In this study, we examined 5-year survival in children with cancer to identify risk factors for treatment-related mortality (TRM). Methods: All children (aged <18 years at diagnosis) diagnosed with cancer in 2 Dutch university hospitals between 2003 and 2013 were included, survival status was determined and causes of death were analysed. Various demographic and treatment factors were evaluated, for which a multivariable competing risks analysis was performed. Results: A total of 1764 patients were included; overall 5-year survival was 78.6%. Of all 378 deaths, 81 (21.4%) were treatment-related, with infection being responsible for more than half of these deaths. Forty percent of TRM occurred in the first three months after initial diagnosis. Factors associated with TRM in the multivariable competing risks analysis were diagnosis of a haematological malignancy, age at diagnosis <1 year and receipt of allogeneic haematopoietic stem cell transplantation. In children suffering from haematological malignancies, TRM accounted for 56.3% of 103 deaths. Conclusion: Over one in five deaths in children with cancer death was related to treatment, mostly due to infection. In children suffering from a haematological malignancy, more children died due to their treatment than due to progression of their disease. To further increase overall survival, clinical and research focus should be placed on lowering TRM rates without compromising anti-tumour efficacy. The findings presented in this study might help identifying areas for improvement
    corecore