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ORIGINAL PAPER

Quantifying change of direction load using positional data from small-sided games in 
soccer
Brenda M.T. Merksa, Wouter G.P. Frenckena,b, A.R. Den Otter a and Michel S. Brink a

aCenter for Human Movement Sciences, University Medical Center, University of Groningen, Groningen, Netherlands; bFootball Club Groningen, 
Groningen, Netherlands

ABSTRACT
Rapid changes in velocity and direction place high mechanical loads on players, but are ignored in 
commonly used load indicators.
Purpose: Quantifying change of direction (COD) load through positional data from small-sided games 
(SSG) and assess its criterion and construct validity.
Methods: Elite male youth soccer players (n = 25, 16.8 ± 1.3 years) played three SSG (5v5, 5×4 min) with 
different field dimensions (small [40×30 m], medium [55×38 m], large [70×45 m]). Positional data of the 
players was obtained with a Local Position Measurement system. COD load (AU) was quantified based on 
the combination of velocity and change in heading direction. Additionally, total distance covered, 
running distance, acceleration count, deceleration count, and Rating of Perceived Exertion were mea-
sured. Criterion validity was assessed by correlating COD load and the load indicators. Construct validity 
was determined by testing the differences between the SSG field dimensions.
Results: Strong correlations were determined between COD load and total distance covered (r = 0.74, p < .01) 
and running distance (r = 0.84, p < .01). Middle and large field size resulted in highest COD load (p < .05).
Conclusion: These results suggest that the COD load measure shows sufficient criterion and construct 
validity.
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Introduction

In soccer, rapid changes in velocity and direction in response to 
a stimulus are considered key aspects of the game (Bloomfield 
et al. 2007; Faude et al. 2012). This is also known as agility and requires 
training to improve it. However, velocity in combination with 
changes of direction place high mechanical load on lower extremities 
(Besier et al. 2001), which can result in increased injury risk if this is 
poorly managed over time (Brent Edwards 2018). It is therefore of 
utmost importance to carefully plan and monitor the load associated 
with the ability of changing direction at high velocity (Sheppard and 
Young 2006; Jaspers et al. 2018; Harper and Kiely 2018).

To quantify training load, a distinction between external and 
internal training load is suggested (Impellizzeri et al. 2005). 
External load measures (e.g. total distance and distance covered 
in different speed zones) refer to the volume and the intensity of 
a training program. Internal training load measures (e.g. heart rate 
and Rating of Perceived Exertion [RPE]) refer to the physiological 
stress imposed on athletes (Impellizzeri et al. 2005). During 
changes of direction (COD) there is an increase in biomechanical 
load when compared to straight-line running (>14.4 km h−1), due 
to the propulsive and braking forces associated with changing 
direction (Besier et al. 2001; Vanrenterghem et al. 2017; Verheul 
et al. 2020). While the first acceleration phase of CODs is compar-
able to straight-line running, CODs require eccentric muscle work 
of the lower extremities and a lateral/anterior placement of the 
foot to decelerate the body (Jones et al. 2016). Concentric muscle 

work, together with the elastic energy stored during the braking 
phase, is thereafter needed to accelerate the body in a new direc-
tion (Spiteri et al. 2013). Since current physical load indicators do 
not aim to measure this specific component, there is a lack of 
biomechanical load indicators (Verheul et al. 2020). This results in 
a likely underestimation of the external load of the athletes.

Validation of new load indicators has often been performed 
by testing its criterion and construct validity. Criterion validity, 
of for example RPE, was determined by correlating this measure 
with heart rate (Impellizzeri et al. 2004; Haddad et al. 2017). 
Likewise, PlayerLoadTM was tested by assessing the relationship 
between PlayerLoadTM and distance covered (in different speed 
zones) (Casamichana et al. 2013; Polglaze et al. 2015). An alter-
native method for validating load indicators, is changing the 
field size of small-sided games (SSG) (Hodgson et al. 2014). 
Since changing pitch dimensions influences the physical 
demands of a game (Casamichana and Castellano 2010; 
Hodgson et al. 2014), it is expected that the load variables 
react according to these changes. A larger field size results in 
more distance covered (at high intensities), higher maximum 
velocities and higher sprint frequencies (Casamichana and 
Castellano 2010). In contrast, smaller field sizes have an 
increased technical demand (more dribbling, turning and inter-
cepting) (Casamichana and Castellano 2010; Hodgson et al. 
2014). These characteristics suggest that changing field sizes 
can be used to determine the construct validity of a new phy-
sical load indicator.
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In Australian football, the number of COD actions increased 
with smaller field dimensions of SSG (Davies et al. 2013). 
Changes of direction were measured with notational analysis, 
because Global Position System (GPS) devices with sampling 
frequencies up to 10 Hz were not able to capture brief high- 
intensity activities (Jennings et al. 2010; Varley et al. 2012; 
Hodgson et al. 2014). Capturing these high-intensity move-
ments requires information on velocity and heading changes 
(i.e. changes in the direction of instantaneous motion with 
respect to the pitch coordinates system), which can be derived 
from positional data (Varley et al. 2012). Modern-day positional 
tracking sensor technologies with higher sampling frequencies 
(25–40 Hz) allow for more accurate measurements of these 
activities. As agility is the ability to change velocity and/or 
direction in response to a stimulus (Sheppard and Young 
2006), the interaction between velocity and heading changes 
can be used to measure this component with tracking sensor 
technology. However, since we do not measure the reactive 
component of agility with positional tracking technologies, it is 
only possible to measure the physical component of agility: 
COD load.

Even though it is known that changes of direction place 
a high mechanical load on athletes, current external load mea-
sures do not incorporate heading changes. Hence, the aim of 
this study is to develop a method to quantify COD load by 
means of tracking sensor technology and to determine its 
criterion and construct validity during SSG. Since COD are 
seen as high-intensity movements, correlations between high- 
intensity activities and COD load are expected. However, per-
fect correlations are not likely since we assume that COD load 
captures a unique aspect of training. In addition, it is expected 
that a larger field size results in higher COD demands of SSG, 
since larger field sizes allow higher velocities at which players 
need to turn.

Methods

Participants

Twenty-five elite male youth soccer players (16.8 ± 1.3 years, 
179 ± 7 cm, 70.4 ± 7.8 kg) of the under-19 and under-17 teams 
of a professional soccer club in the Netherlands participated in 
this study (who trained 4 days a week). For each team, three 
training sessions were monitored in the winter of the 2016/ 
2017 season. All participants provided written informed con-
sent. If they were younger than 18 years old, both the players 
and their parents provided written informed consent. The pro-
cedures of this study were approved by the ethics committee of 
the Department of Human Movement Sciences, University 
Medical Center Groningen (UMCG), University of Groningen, 
the Netherlands.

Protocol

In this study, five 5 vs 5 SSGs were played on three different 
pitch sizes: a large pitch (70 by 45 m; 315 m2 per player), 
a middle-sized pitch (55 by 38 m; 209 m2 per player), and 
a small pitch (40 by 30 m; 120 m2 per player). Players completed 
a standardized warming up prior to the SSGs. The duration of 

the standardized warming up was 20 minutes and consisted of: 
jogging, plyometric exercises, short sprints (10 m) and submax-
imal long sprints (40 m). Plays were divided into five 4-min 
periods, interspersed with 4 min rest. Official match rules 
were applied. Of the 25 available players, seven players partici-
pated in all three measurements, eight players took part in two 
measurements and 10 players were involved in a single mea-
surement. Sixteen players were involved in measurements on 
the large and middle field size, and 15 for the small field.

Data collection

The local position measurement (LPM) system (Inmotio Object 
Tracking BV, Amsterdam, the Netherlands) was used to collect 
position data of the players at a sample rate of 40 Hz. Players 
wore a vest with one antenna on each shoulder that was 
connected to a transponder on their back. The technical 
aspects of the system, and the validity of LPM data are 
described elsewhere (Frencken et al. 2010).

Data analysis

Custom made software in Matlab (version 2018a; MathWorks 
Inc., Natick, Massachusetts, USA) was used to process the posi-
tion data. Four parameters were calculated to represent the 
external load of players: (i) the total distance covered (ii) the 
total distance covered at running velocity (>14.4 km h−1), (iii) 
the number of accelerations (velocity >2 m s−1 and acceleration 
>for at least 100 ms) (Gaudino et al. 2014; Stevens et al. 2014), 
and (iv) the number of decelerations (velocity >2 m s−1, accel-
eration <−2 m s−2 for at least 100 ms) (Gaudino et al. 2014; 
Stevens et al. 2014). To account for possible differences in 
playing time between players, the number of accelerations 
and decelerations for each player was expressed as 
a percentage of total playing time. To quantify internal load, 
players rated their RPE scores on a 15-point Likert scale (ran-
ging from 6 to 20) (Impellizzeri et al. 2004). RPE scores were 
collected a few minutes after the completion of the games.

Calculation of COD load

Previous research on COD has shown that movement velocity 
generally decreases with COD angle (Hader et al. 2015; Havens 
and Sigward 2015; Dos’Santos et al. 2018). Figure 1 illustrates 
that this relation is also a property of player movement on the 
pitch, showing the movement trajectory (Figure 1a), and the 
related velocity and heading change (i.e. the difference in 
horizontal heading angle between two consecutive points in 
time) data (Figure 1b) of a player for 100 s. Figure 1b demon-
strates that, as sharper turns are made (i.e. the change in head-
ing is large), player velocity is generally low, resulting in 
a negative correlation between both time series (r = −.455).

Figure 2 displays the relation between velocity and heading 
change for a typical player for a complete 20-min game. From 
this figure, it becomes apparent that the maximum attained 
velocity decreases with heading change. A second property of 
the velocity–heading change relationship that becomes clear 
from this figure, is that the maximum attained velocity 
decreases non-linearly with heading change. These two 
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properties reflect the common intuition that at higher veloci-
ties, it becomes increasingly more difficult to make sharp turns. 
Because COD refers to the skill involved in changing heading at 
high velocities (Sheppard and Young 2006), we believe the 
features of the velocity–heading relationship described above, 
can be exploited to quantify COD load using position data 
obtained during real games.

For this purpose, we first selected time windows where agile 
action (i.e. substantial changes in heading at a relatively high 
velocity) occurred, based on a non-linear cutoff function that 
combines player velocity (m·s−1) and heading change (degrees 
p. second), derived from position data x; yð Þ obtained by the 
LPM system. The heading angle ϕ was determined for each 
sample t 1 . . . nð Þ, as follows: 

ϕ tð Þ ¼ tan� 1 _y tð Þ
_x tð Þ

� �

(1) 

where _x is the linear velocity in the x direction (i.e. the width of 
the pitch) and _y is the linear velocity in the y direction (i.e. the 
length of the pitch). ϕ tð Þ is positive for displacement to the right 
and negative for displacement to the left. Player velocity Vin 
the x–y plane was calculated for each sample t as 

VðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxðtÞ � xðt � 1ÞÞ2 þ ðyðtÞ � yðt � 1ÞÞ2

dt

s

: (2) 

To quantify the change in heading over time, time windows 
were defined. To this end, ϕ tð Þ and V tð Þ were segmented into m 
discrete time windows w 1ð Þ. Here, the duration of w was set to 
1 s, assuming that meaningful changes in heading can be made 
within 1 s. The change in heading (ΔΦ wð Þ) was determined as 
the total change in ϕ tð Þ within each time window w (i.e. the 
change in heading direction during 1 s). Δϕt wð Þ is positive for 
turns to the right and negative for turns to the left. Player 
velocity within each window ðVwÞ was calculated as the 

average velocity V tð Þ within time window w (i.e. the average 
velocity of all measurement during 1 s).

As becomes clear from Figure 1b, players predominantly 
move at lower velocities, and/or travel straight trajectories, so 
that the player’s COD-related skills are hardly addressed. 
Therefore, to determine the COD load, we chose to restrict 
the analysis to selected time windows in which a minimum 
velocity and a minimum direction change were displayed. In 
accordance with the properties of COD outlined above (i.e. 
a non-linear decrease in velocity with increasing curvature), 
the following function was defined as a velocity and curvature 
dependent cutoff: 

1
k � ΔϕðwÞ

: (3) 

As Figure 2c illustrates, the shape of the cutoff function can be 
tuned to some extent by adjusting k. Based on visual inspection 
of the data, for the present purpose k was set to 0.15. The 
resulting cutoff curve is plotted in Figure 2a. Data above the 
curve (black dots) were included, whereas data below the curve 
(gray dots) were excluded for determining the COD load. Based 
on the assumption that for a given angle, a higher displayed 
velocity corresponds to a greater COD load, the COD load A wð Þ
was calculated for each window w as the vertical distance to 
the cutoff curve, as follows: 

AðwÞ ¼ VðwÞ �
1

k � ΔϕðwÞ
: (4) 

Finally, for each player n, the average COD load �A nð Þ over the 
measurement period was calculated in arbitrary units as 

�AðnÞ ¼
Pm

w¼1 AðwÞ
m

: (5) 

The individual COD load scores were then used for statistical 
analysis.

Figure 1. A. Movement trajectory (y is the length axis of the pitch) of a typical player for a period of 100 s. B. Velocity (black) and heading change (red) for the 
windowed data (1 s) displayed in figure 1A. The correlation between heading change and velocity for this epoch was −.445.
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Statistical analysis

Criterion validity was determined calculating the Pearson cor-
relation between the COD parameter and each of the external 
load parameters (total distance covered, distance covered at 
high velocity, number of accelerations, number of decelera-
tions), and internal load parameter (RPE scores). To simplify 
the analysis, only the data obtained on the large pitch 
(n = 16) were included in this analysis as this most closely 
resembles the dimensions of a normal soccer pitch. In accor-
dance with Cohen (1988), relations with correlations of .1 were 
considered weak, .3 were considered moderate, and .5 were 
considered strong.

To test the construct validity of the COD parameter, 
a linear mixed model (LMM) was set up to evaluate the effect 
of field size (small, middle, and large) on COD load and the 
other load indicators. A LLM was used because the number of 
repeated measures (i.e. number of times each participant 
participated in a trial), differed between participants. For this 
analysis, field size was used as first level of analysis and 

individual athletes represented the second level of analysis. 
Since a repeated measures design was chosen, data could be 
analyzed with a compound symmetry matrix. Because the 
assumption of equal variances and covariances was violated, 
an unstructured matrix was used for analysis. In case of sig-
nificant main effects of field size, post hoc pairwise compar-
isons were conducted to analyze differences between 
different field sizes. Bonferroni corrections were applied to 
maintain the familywise error rate at 5%. Furthermore, effect 
sizes (ES) were calculated for the paired comparisons. All 
statistical analysis was done using SPSS version 23.0 (SPSS 
Inc., Chicago, IL, USA).

Results

Results of the correlational analysis revealed a strong relation-
ship between COD load and total distance covered (r = 0.74, 
p < 0.01), and running distance (r = 0.84, p < 0.01). No signifi-
cant relationship was found between COD load and the 

Figure 2. Calculation of the COD load parameter. (A) Combined velocity (vertical axes) and heading change (horizontal axes) data for a single player for all 1-s windows 
during a complete 20-minute match (70 by 45 m pitch, rests excluded). Each dot represents a 1-s time window. If the average velocity within a given window was 
higher than 1/(κ× ∆φ(ω)) (where ∆φ represents the observed heading change within the time window), data from this time window were included (black dots). Data 
below the cutoff function were not included in calculation of the COD load analysis (gray dots). (B) Detail of (A) illustrating the calculation of the COD load A(ω) for each 
window ω as the vertical distance to the cutoff curve 1/(κ* ∆φ(ω)). (C) Tuning of the cutoff function by using different values of κ.
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number of accelerations (r = .18), the number of decelerations 
(r = −.01), and RPE scores (r = .12; p > 0.05 for all comparisons).

The average values for COD load and the load parameters 
are shown in Table 1. Results from LMM showed that COD load 
differed between field sizes (F(2,7.22) = 53.48; p < 0.001). Post 
hoc analysis showed that the average COD load was signifi-
cantly lower for the small field size (0.22 ± .06) compared to the 
middle-sized (0.33 ± .04; p < 0.001, ES = 2.21) and large field 
(0.31 ± .05; p < 0.001, ES = 1.84).

Total distance covered also differed between field sizes (F 
(2,13.43) = 27.17; p < 0.001), with significantly larger distances 
observed on the large field (3300 ± 40 m) compared to the 
middle-sized (2890 ± 30 m; p < 0.001, ES = 2.27) and the small 
field (2710 ± 140 m; p < 0.05, ES = 1.12). Likewise, running distance 
(>14.4 km h−1) differed between field sizes (F(2,12.23) = 331.94; 
p < 0.001). Players running distances were higher on the large field 
(929 ± 24 m) compared to the middle-sized (803 ± 33 m; p < 0.05, 
ES = 0.86) and the small field (494 ± 26 m; p < 0.001, ES = 3.33). 
Running distance also differed significantly between the middle- 
sized and the small field (p < 0.001). The number of accelerations 
(F(2,12.51) = 1.58), the number of decelerations (F(2, 9.65) = 3.37), 
and RPE (F(2,14.88) = 1.73) did not differ significantly between 
different field sizes (p > 0.05 for all comparisons).

Discussion

The aim of the present study was to quantify COD load with 
tracking sensor technology and assess its criterion and construct 
validity during SSG. To do so, a novel compound measure was 
developed that included both velocity and heading change. The 
main results of this study show that there were strong correlations 
between COD load and the total distance covered and running 
distance for the large field size. Weak non-significant relationships 
were found between COD load and the number of accelerations, 
the number of decelerations, and RPE scores. Middle and large 
field sizes resulted in highest agility load. Correlations between the 
commonly used physical load indicators and COD load ranged 
from weak non-significant correlations to strong significant corre-
lations for the large field dimension. Strong significant correlations 
were present between COD load and total distance covered and 
running distance. Since COD load consists of both velocity and 
changes of direction, it is unsurprising that for the large field 
dimension, it relates to running distance. Logically, when more 
distance is covered at higher speed, this results in more distance 
covered and thus in a strong significant correlation with total 
distance covered as well.

A weak non-significant relationship was found between the 
COD parameter and the number of accelerations and decelera-
tions. Whilst is might be surprising that COD load does not 
correlate with the number of accelerations and decelerations 
for the large field dimensions, it can be understood by the 
velocity-heading change trade-off (Dos’Santos et al. 2018). 
Accelerations and decelerations were counted based on pre-
determined thresholds and often occur at lower velocities 
when player initiate action (i.e. getting past an opponent) 
(Varley and Aughey 2013). Even though this will likely include 
changes of direction, only large heading changes at low velo-
cities do markedly contribute to COD load, since these are 
thought to impose a higher biomechanical load (Dos’Santos 
et al. 2018). Therefore, even though these accelerations/decel-
erations may have included (small) heading changes, it did not 
markedly contribute to COD load. Finally, RPE was weak and 
non-significantly associated with COD load. Since RPE is known 
to be related to cardiovascular indicators (Impellizzeri et al. 
2005), and COD load aims to capture biomechanical demands, 
lack of relation with RPE was to be expected.

Adjusting the field dimensions of SSG resulted in highest 
COD demands for the middle and large field dimension. This 
supports construct validity and coincided with increased total 
distance covered (at running speed) but also lower (although 
not significantly) number of accelerations and decelerations for 
larger field sizes. The middle-sized field tends to have even 
higher COD load compared to the largest field size. An explana-
tion for this is that velocity is expected to be highest on a large 
field sizes but changes of direction on small field sizes. Since 
COD load combines both aspects, the finding is in line with the 
hypothesis and in accordance with previous research 
(Casamichana and Castellano 2010; Davies et al. 2013; 
Hodgson et al. 2014; Gaudino et al. 2014; Malone and Collins 
2017).

It might be surprising that the number of accelerations and 
decelerations did not significantly differ between field sizes, 
giving the fact that other studies did find significantly different 
values between field sizes (Gaudino et al. 2014; Malone and 
Collins 2017). One of the explanations for this is that there were 
differences in how acceleration and decelerations efforts were 
defined (i.e. differences in time and velocity thresholds) 
between previous research and the current study. Next to 
this, threshold-based accelerations have been reported to 
have good-to-poor reliability, since small differences in the 
measured acceleration might lead to the same effort being 
registered or not (Thornton et al. 2016). Hence, a more robust 

Table 1. Average values (+standard error) for the load indicators.

COD load
Total distance cov-

ered (m)
Running distance 

covered (m)
Number of accelerations as percen-

tage of time (%)
Number of decelerations aspercen-

tage of time (%)
RPE 
(AU)

Large .31 (0.05)* 3300 (40)* 929 (24)*# .076 (.002) .071 (.002) 17.47 
(.33)

Middle .33 (0.04)* 2890 (30) 803 (33)* .080 (.002) .078 (.002) 17.83 
(.18)

Small .22 (0.06) 2710 (140) 494 (26) .083 (.005) .079 (.004) 17.37 
(.34)

*Significantly different from small field size. 
#Significantly different from middle field size.
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acceleration measure (e.g. average acceleration) might have 
been able to measure differences between field sizes.

The unique responses of the other load indicators to 
changes in field sizes can be explained by the fact that these 
variables represent physiological or biomechanical loads 
(Vanrenterghem et al. 2017). The finding that internal load did 
not differ between different field dimensions might support 
this. Players could have perceived decreasing physiological 
loads corresponding to less distance covered at smaller field 
dimensions, but also higher biomechanical loads due to more 
decelerations and accelerations. Resulting in the same internal 
load, but with different contributions of the components. 
Indeed, players are able to recognize the different feelings of 
breathlessness, muscle exertion, and cognitive exertion corre-
sponding to different training exercises and matches (Weston 
et al. 2015; McLaren et al. 2016, 2017). Based on the current 
results we cannot draw any conclusions on whether the inter-
nal load for the three SSGs is composed in different ways, even 
though the external load measure do suggest this might be the 
case.

To better understand the training process, a distinction 
between the physiological and biomechanical load has been 
proposed (Vanrenterghem et al. 2017). An indication of the 
physiological load on the body can be retrieved from variables 
such as the distances covered in different speed zones 
(Vanrenterghem et al. 2017). When the physiological system is 
sufficiently stressed during training, positive metabolic and 
cardiorespiratory adaptations take place. On the other hand, 
physical load also incorporates a biomechanical component. 
Propulsive and braking forces associated with changes in velo-
city and/or direction place high loads on soft tissues (Harper 
and Kiely 2018; Verheul et al. 2020). When these biomechanical 
aspects are adequately managed over time, positive adapta-
tions occur (e.g. changes in tendon structure and stiffness) 
(Verheul et al. 2020). To ensure that positive adaptations take 
place in response to both types of stressors, it is needed to get 
an indication of the physiological and biomechanical load over 
time. Even though the physiological load is well represented in 
the current physical load variables, the biomechanical load is 
largely overlooked.

Although there is a growing understanding that biomecha-
nical load should be measured separately, there have been 
difficulties in estimating the biomechanical load in practice. 
Motion-capture systems and force platforms are currently 
used to indirectly estimate the load acting on tissues (Verheul 
et al. 2020). However, these methods are restricted to labora-
tories and are therefore not suited for daily practice. Inertial 
measurement units (IMU) fixed to lower body extremities may 
be able to measure joint kinematic in team sport practice, and 
might overcome low ecological validity of lab testing (Cuesta- 
Vargas et al. 2010). Recent research has shown promising 
results for measuring joint kinematics with IMUs for linear 
sprinting (Bastiaansen et al. 2020) and football-specific move-
ments (Wilmes et al. 2020). However, there remain difficulties 
with the application in games due to the displacement of the 
sensors when making tackles (i.e. it might bruise players and it 
hinders the measurement) (Bastiaansen et al. 2020; Wilmes 
et al. 2020). The smart sensor shorts, which aim to overcome 
displacement of sensors, need further development in future. In 

the meantime, we propose the current COD load variable as 
good alternative to get an indication of the biomechanical load 
on the players in team sport practice.

This study is the first to quantify COD load of SSG with 
time-motion analysis by using the interaction between velo-
city and heading changes. By using tracking sensor technolo-
gies with a high sampling frequency, it was possible to 
accurately measure high-intensity activities. A limitation of 
the current study is that we could not fully control the forma-
tions of the teams for each SSG, due to some injuries and 
illnesses. As a consequence, the teams slightly changed 
between the conditions. Therefore, differences between the 
field dimensions might be bigger or smaller than shown in 
this study. However, missing data was handled well with the 
use of mixed linear models. Future research could focus on 
the relation between COD load and relevant training out-
comes such as performance. In addition, the role of COD 
load as risk factor for injuries could be assessed. 
Furthermore, one could also assess the COD parameter as 
performance outcome and a replacement for field testing. 
A major advantage of this approach is that it can be trans-
ferred to other team sports and overcomes poor specificity of 
general tests (Brink and Lemmink 2018).

Conclusion

To summarize, COD load is strongly correlated with total dis-
tance covered and the running distance covered during large- 
sized SSG in young elite soccer players. This supports criterion 
validity. The different patterns for the distances covered and 
COD demands of SSG with changing field sizes, show that the 
COD variable has sufficient construct validity.
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