7,176 research outputs found
The Influence of Job Satisfaction and Organizational Commitment on Executive Withdrawal and Performance
This research examines the influence of job satisfaction and three dimensions of organizational commitment (i.e., affective, continuance, and normative) on the intention to leave, job search activity, performance, and leadership effectiveness of executives. Job satisfaction and the commitment dimensions were hypothesized to negatively predict the retention-related variables. Results generally supported the hypotheses. Job satisfaction had the strongest relationship, but both affective and continuance commitment showed an incremental effect even in the presence of job satisfaction. We also hypothesized that job satisfaction and affective commitment would positively and continuance commitment would negatively associate with general performance and leadership. As predicted, job satisfaction associated positively with performance, though not with leadership. Continuance commitment negatively associated with both performance and leadership
Addressing business agility challenges with enterprise systems
It is clear that systems agility (i.e., having a responsive IT infrastructure that can be changed quickly to meet changing business needs) has become a critical component of organizational agility. However, skeptics continue to suggest that, despite the benefits enterprise system packages provide, they are constraining choices for firms faced with agility challenges. The reason for this skepticism is that the tight integration between different parts of the business that enables many enterprise systems\u27 benefits also increases the systems\u27 complexity, and this increased complexity, say the skeptics, increases the difficulty of changing systems when business needs change. These persistent concerns motivated us to conduct a series of interviews with business and IT managers in 15 firms to identify how they addressed, in total, 57 different business agility challenges. Our analysis suggests that when the challenges involved an enterprise system, firms were able to address a high percentage of their challenges with four options that avoid the difficulties associated with changing the complex core system: capabilities already built-in to the package but not previously used, leveraging globally consistent integrated data already available, using add-on systems available on the market that easily interfaced with the existing enterprise system, and vendor provided patches that automatically updated the code. These findings have important implications for organizations with and without enterprise system architectures
Rugged, low-conductance, heat-flow probe
Lightweight, compact probe structure has low thermal conductance to enable accurate measurement of slight temperature gradients. Probe combines ruggedness, high precision, accuracy, and stability. Device can withstand vibration, shock, acceleration, temperature extremes, and high vacuums, and should interest industrial engineers and geologists
Seasonality in the Surface Energy Balance of Tundra in the Lower Mackenzie River Basin
This study details seasonal characteristics in the annual surface energy balance of upland and lowland tundra during the 1998–99 water year (Y2). It contrasts the results with the 1997–98 water year (Y1) and relates the findings to the climatic normals for the lower Mackenzie River basin region. Both years were much warmer than the long-term average, with Y1 being both warmer and wetter than Y2. Six seasons are defined as early winter, midwinter, late winter, spring, summer, and fall. The most rapid changes in the surface energy balance occur in spring, fall, and late winter. Of these, spring is the most dynamic, and there is distinct asymmetry between rates of change in spring and those in fall. Rates of change of potential insolation (extraterrestrial solar radiation) in late winter, spring, and fall are within 10% of one another, being highest in late winter and smallest in spring. Rates of change in air temperature and ground temperature are twice as large in spring as in fall and late winter, when they are about the same. Rates of change in components of the energy balance in spring are twice and 4 times as large as in fall and late winter, respectively. The timing of snowpack ripening and snowmelt is the major agent determining the magnitude of asymmetry between fall and spring. This timing is a result of interaction between the solar cycle, air temperature, and snowpack longevity. Based on evidence from this study, potential surface responses to a 18C increase in air temperature are small to moderate in most seasons, but are large in spring when increases range from 7% to 10% of average surface energy fluxes
Gain properties of dye-doped polymer thin films
Hybrid pumping appears as a promising compromise in order to reach the much
coveted goal of an electrically pumped organic laser. In such configuration the
organic material is optically pumped by an electrically pumped inorganic device
on chip. This engineering solution requires therefore an optimization of the
organic gain medium under optical pumping. Here, we report a detailed study of
the gain features of dye-doped polymer thin films. In particular we introduce
the gain efficiency , in order to facilitate comparison between different
materials and experimental conditions. The gain efficiency was measured with
various setups (pump-probe amplification, variable stripe length method, laser
thresholds) in order to study several factors which modify the actual gain of a
layer, namely the confinement factor, the pump polarization, the molecular
anisotropy, and the re-absorption. For instance, for a 600 nm thick 5 wt\% DCM
doped PMMA layer, the different experimental approaches give a consistent value
80 cm.MW. On the contrary, the usual model predicting the gain
from the characteristics of the material leads to an overestimation by two
orders of magnitude, which raises a serious problem in the design of actual
devices. In this context, we demonstrate the feasibility to infer the gain
efficiency from the laser threshold of well-calibrated devices. Besides,
temporal measurements at the picosecond scale were carried out to support the
analysis.Comment: 15 pages, 17 figure
The temporal nature of social context: Insights from the daily lives of patients with HIV
BACKGROUND: Patients\u27 life contexts are increasingly recognized as important, as evidenced by growing attention to the Social Determinants of Health (SDoH). This attention may be particularly valuable for patients with complex needs, like those with HIV, who are more likely to experience age-related comorbidities, mental health or substance use issues. Understanding patient perceptions of their life context can advance SDoH approaches.
OBJECTIVES: We sought to understand how aging patients with HIV think about their life context and explored if and how their reported context was documented in their electronic medical records (EMRs).
DESIGN: We combined life story interviews and EMR data to understand the health-related daily life experiences of patients with HIV. Patients over 50 were recruited from two US Department of Veterans Affairs HIV clinics. Narrative analysis was used to organize data by life events and health-related metrics.
KEY RESULTS: EMRs of 15 participants documented an average of 19 diagnoses and 10 medications but generally failed to include social contexts salient to patients. In interviews, HIV was discussed primarily in response to direct interviewer questions. Instead, participants raised past trauma, current social engagement, and concern about future health with varying salience. This led us to organize the narratives temporally according to past-, present-, or future-orientation. Past-focused narratives dwelled on unresolved experiences with social institutions like the school system, military or marriage. Present-focused narratives emphasized daily life challenges, like social isolation. Future-focused narratives were dominated by concerns that aging would limit activities.
CONCLUSIONS: A temporally informed understanding of patients\u27 life circumstances that are the foundation of their individualized SDoH could better focus care plans by addressing contextual concerns salient to patients. Trust-building may be a critical first step in caring for past-focused patients. Present-focused patients may benefit from support groups. Future-focused patients may desire discussing long term care options
Automatic Detection and Prediction of the Transition Between the Behavioural States of a Subject Through a Wearable CPS
The PRESLEEP project is aimed at the fine assessment and validation of the proposed proprietary methodology/technology, for the automatic detection and prediction of the transition between the behavioural states of a subject (e.g. wakefulness, drowsiness and sleeping) through a wearable Cyber Physical System (CPS). The Intellectual Property (IP) is based on a combined multi-factor and multi-domain analysis thus being able to extract a robust set of parameters despite of the, generally, low quality of the physiological signals measured through a wearable system applied to the wrist of the subject. An application experiment has been carried out at AVL, based on reduced wakefulness maintenance test procedure, to validate the algorithm’s detection and prediction capability once the subject is driving in the dynamic vehicle simulator
Fast shower simulation in the ATLAS calorimeter
The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.
In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ~1 GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper
Effects of short-term warming on low and high latitude forest ant communities
Climatic change is expected to have differential effects on ecological communities in different geographic areas. However, few studies have experimentally demonstrated the effects of warming on communities simultaneously at different locales. We manipulated air temperature with in situ passive warming and cooling chambers and quantified effects of temperature on ant abundance, diversity, and foraging activities (predation, scavenging, seed dispersal, nectivory, granivory) in two deciduous forests at 35° and 43° N latitude in the eastern U.S. In the southern site, the most abundant species, Crematogaster lineolata, increased while species evenness, most ant foraging activities, and abundance of several other ant species declined with increasing temperature. In the northern site, species evenness was highest at intermediate temperatures, but no other metrics of diversity or foraging activity changed with temperature. Regardless of temperature, ant abundance and foraging activities at the northern site were several orders of magnitude lower than those in the southern site. Copyright: © 2011 Pelini et al
- …