5,026 research outputs found
Free Energy of a Dilute Bose Gas: Lower Bound
A lower bound is derived on the free energy (per unit volume) of a
homogeneous Bose gas at density and temperature . In the dilute
regime, i.e., when , where denotes the scattering length of
the pair-interaction potential, our bound differs to leading order from the
expression for non-interacting particles by the term . Here, denotes the critical density for
Bose-Einstein condensation (for the non-interacting gas), and denotes
the positive part. Our bound is uniform in the temperature up to temperatures
of the order of the critical temperature, i.e., or smaller.
One of the key ingredients in the proof is the use of coherent states to extend
the method introduced in [arXiv:math-ph/0601051] for estimating correlations to
temperatures below the critical one.Comment: LaTeX2e, 53 page
Ground State Asymptotics of a Dilute, Rotating Gas
We investigate the ground state properties of a gas of interacting particles
confined in an external potential in three dimensions and subject to rotation
around an axis of symmetry. We consider the so-called Gross-Pitaevskii (GP)
limit of a dilute gas. Analyzing both the absolute and the bosonic ground state
of the system we show, in particular, their different behavior for a certain
range of parameters. This parameter range is determined by the question whether
the rotational symmetry in the minimizer of the GP functional is broken or not.
For the absolute ground state, we prove that in the GP limit a modified GP
functional depending on density matrices correctly describes the energy and
reduced density matrices, independent of symmetry breaking. For the bosonic
ground state this holds true if and only if the symmetry is unbroken.Comment: LaTeX2e, 37 page
On the maximal ionization of atoms in strong magnetic fields
We give upper bounds for the number of spin 1/2 particles that can be bound
to a nucleus of charge Z in the presence of a magnetic field B, including the
spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1
for magnetic fields that go to zero at infinity, ignoring the spin-field
interaction. For particles with fermionic statistics in a homogeneous magnetic
field our upper bound has an additional term of order
.Comment: LaTeX2e, 8 page
The TF Limit for Rapidly Rotating Bose Gases in Anharmonic Traps
Starting from the full many body Hamiltonian we derive the leading order
energy and density asymptotics for the ground state of a dilute, rotating Bose
gas in an anharmonic trap in the ` Thomas Fermi' (TF) limit when the
Gross-Pitaevskii coupling parameter and/or the rotation velocity tend to
infinity. Although the many-body wave function is expected to have a
complicated phase, the leading order contribution to the energy can be computed
by minimizing a simple functional of the density alone
The Ground States of Large Quantum Dots in Magnetic Fields
The quantum mechanical ground state of a 2D -electron system in a
confining potential ( is a coupling constant) and a homogeneous
magnetic field is studied in the high density limit , with fixed. It is proved that the ground state energy and
electronic density can be computed {\it exactly} in this limit by minimizing
simple functionals of the density. There are three such functionals depending
on the way varies as : A 2D Thomas-Fermi (TF) theory applies
in the case ; if the correct limit theory
is a modified -dependent TF model, and the case is described
by a ``classical'' continuum electrostatic theory. For homogeneous potentials
this last model describes also the weak coupling limit for arbitrary
. Important steps in the proof are the derivation of a new Lieb-Thirring
inequality for the sum of eigenvalues of single particle Hamiltonians in 2D
with magnetic fields, and an estimation of the exchange-correlation energy. For
this last estimate we study a model of classical point charges with
electrostatic interactions that provides a lower bound for the true quantum
mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil
Gradient corrections for semiclassical theories of atoms in strong magnetic fields
This paper is divided into two parts. In the first one the von Weizs\"acker
term is introduced to the Magnetic TF theory and the resulting MTFW functional
is mathematically analyzed. In particular, it is shown that the von
Weizs\"acker term produces the Scott correction up to magnetic fields of order
, in accordance with a result of V. Ivrii on the quantum mechanical
ground state energy. The second part is dedicated to gradient corrections for
semiclassical theories of atoms restricted to electrons in the lowest Landau
band. We consider modifications of the Thomas-Fermi theory for strong magnetic
fields (STF), i.e. for . The main modification consists in replacing
the integration over the variables perpendicular to the field by an expansion
in angular momentum eigenfunctions in the lowest Landau band. This leads to a
functional (DSTF) depending on a sequence of one-dimensional densities. For a
one-dimensional Fermi gas the analogue of a Weizs\"acker correction has a
negative sign and we discuss the corresponding modification of the DSTF
functional.Comment: Latex2e, 36 page
Evaluation of a fluorocarbon plastic used in cryogenic valve seals
Effects of strain rate, temperature, crystallinity, and surface finish /smoothness/ on the tensile strength of a commercial chlorotrifluorethylene plastic /CTFE/ used for lipseals in very fast-acting liquid oxygen valves
Uniform Density Theorem for the Hubbard Model
A general class of hopping models on a finite bipartite lattice is
considered, including the Hubbard model and the Falicov-Kimball model. For the
half-filled band, the single-particle density matrix \uprho (x,y) in the
ground state and in the canonical and grand canonical ensembles is shown to be
constant on the diagonal , and to vanish if and if and
are on the same sublattice. For free electron hopping models, it is shown in
addition that there are no correlations between sites of the same sublattice in
any higher order density matrix. Physical implications are discussed.Comment: 15 pages, plaintex, EHLMLRJM-22/Feb/9
A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity
We revisit and prove some convexity inequalities for trace functions
conjectured in the earlier part I. The main functional considered is
\Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m
positive definite operators A_j. In part I we only considered the case q=1 and
proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2.
We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only
settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also
able to include the parameter q\geq 1 and still retain the convexity. Among
other things this leads to a definition of an L^q(L^p) norm for operators when
1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of
three Hilbert spaces -- which leads to another proof of strong subadditivity of
entropy. We also prove convexity/concavity properties of some other, related
functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces
earlier draft. 18 pages, late
Derivation of the Gross-Pitaevskii Hierarchy
We report on some recent results regarding the dynamical behavior of a
trapped Bose-Einstein condensate, in the limit of a large number of particles.
These results were obtained in \cite{ESY}, a joint work with L. Erd\H os and
H.-T. Yau.Comment: 15 pages; for the proceedings of the QMath9 International Conference,
Giens, France, Sept. 200
- …