Abstract

The quantum mechanical ground state of a 2D NN-electron system in a confining potential V(x)=Kv(x)V(x)=Kv(x) (KK is a coupling constant) and a homogeneous magnetic field BB is studied in the high density limit NN\to\infty, KK\to \infty with K/NK/N fixed. It is proved that the ground state energy and electronic density can be computed {\it exactly} in this limit by minimizing simple functionals of the density. There are three such functionals depending on the way B/NB/N varies as NN\to\infty: A 2D Thomas-Fermi (TF) theory applies in the case B/N0B/N\to 0; if B/Nconst.0B/N\to{\rm const.}\neq 0 the correct limit theory is a modified BB-dependent TF model, and the case B/NB/N\to\infty is described by a ``classical'' continuum electrostatic theory. For homogeneous potentials this last model describes also the weak coupling limit K/N0K/N\to 0 for arbitrary BB. Important steps in the proof are the derivation of a new Lieb-Thirring inequality for the sum of eigenvalues of single particle Hamiltonians in 2D with magnetic fields, and an estimation of the exchange-correlation energy. For this last estimate we study a model of classical point charges with electrostatic interactions that provides a lower bound for the true quantum mechanical energy.Comment: 57 pages, Plain tex, 5 figures in separate uufil

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 17/03/2019