research

On the maximal ionization of atoms in strong magnetic fields

Abstract

We give upper bounds for the number of spin 1/2 particles that can be bound to a nucleus of charge Z in the presence of a magnetic field B, including the spin-field coupling. We use Lieb's strategy, which is known to yield N_c<2Z+1 for magnetic fields that go to zero at infinity, ignoring the spin-field interaction. For particles with fermionic statistics in a homogeneous magnetic field our upper bound has an additional term of order Z×min(B/Z3)2/5,1+ln(B/Z3)2Z\times\min{(B/Z^3)^{2/5},1+|\ln(B/Z^3)|^2}.Comment: LaTeX2e, 8 page

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019