research

A Minkowski Type Trace Inequality and Strong Subadditivity of Quantum Entropy II: Convexity and Concavity

Abstract

We revisit and prove some convexity inequalities for trace functions conjectured in the earlier part I. The main functional considered is \Phi_{p,q}(A_1,A_2,...,A_m) = (trace((\sum_{j=1}^m A_j^p)^{q/p}))^{1/q} for m positive definite operators A_j. In part I we only considered the case q=1 and proved the concavity of \Phi_{p,1} for 0 < p \leq 1 and the convexity for p=2. We conjectured the convexity of \Phi_{p,1} for 1< p < 2. Here we not only settle the unresolved case of joint convexity for 1 \leq p \leq 2, we are also able to include the parameter q\geq 1 and still retain the convexity. Among other things this leads to a definition of an L^q(L^p) norm for operators when 1 \leq p \leq 2 and a Minkowski inequality for operators on a tensor product of three Hilbert spaces -- which leads to another proof of strong subadditivity of entropy. We also prove convexity/concavity properties of some other, related functionals.Comment: Proof of a conjecture in math/0701352. Revised version replaces earlier draft. 18 pages, late

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2020