329 research outputs found

    Biochar as potting soil constituent and as carrier of Bacillus in the cultivation of Cyclamen

    Get PDF
    There is a growing interest in peat alternatives for the preparation of horticultural potting soils. There is also a growing interest in preparing potting soil mixes with added micro-organisms to increase the resilience of the potting soil – plant combination against diseases. Our goal was to use biochar to partly replace peat as well as to carry a commercial Bacillus subtilis into peat based potting soils. Peat based rooting media were prepared with an increasing volume fraction of biochar (0, 20, 20, 35 and 50%-v/v). Two extra treatments based on 0 and 20%-v/v biochar were inoculated with Bacillus subtilis in a concentration of 10^7 c.f.u./g dry rooting medium. Cyclamen persicum Halios® Blush were planted and cultivated during 4 months. The water content of the pot was monitored and the irrigation schedule was set to maintain a minimum volume of 32%-v/v of water. At the end of the cultivation period the fresh and dry biomass of the leaves, flowers and tubers was measured. Results showed an optimum Cyclamen growth in the treatment with 20%-v/v biochar. However the reduced biomass production at higher levels of biochar were caused by a lack of nutrients added and not by the biochar itself, as indicated by EC levels and levels of individual elements. The inoculated Bacillus population first decreased and finally stabilized in the rooting media. Bacillus inoculation had a negative effect on biomass production. In conclusion the use of biochar as peat alternative is possible if additional attention is paid to irrigation settings and nutrient levels. The use of biochar as carrier for resilience enhancing Bacillus subtilis was unsuccessful

    MatricS—A novel tool for monitoring professional role development in surgical disciplines

    Get PDF
    Introduction: Mentoring is an effective method for human resource development. Monitoring the process is important for individual mentee/mentor pairs as well as for program directors. Due to individual personality differences of both mentees and mentors and their respective interactions, it is challenging to monitor the individual development process of mentees in a structured manner. This study investigates to what extent a novel instrument, the mentee-based assessment tool for role development of interpersonal competencies in surgical professions (MatricS) can adequately monitor the professional role development process of residents during an established mentoring program. Material and methods: In a prospective longitudinal study, the competence development of 31 mentees in two subsequent cohorts was assessed by a modified role matrix based on Canadian Medical Education Directives for Specialists. The evaluation focused on three defined roles (D, developer; N, networker; M, multiplicator) at three levels (private, employer-related, national/international) with four stages of development. For validation of mentee self-assessments, the assessments of the respective mentors were recorded alongside. For correlation analyses, Pearson coefficients were calculated, pre-post-comparisons were done by paired t-tests; significance was assumed at p < 0.05, respectively. Results: Mentee self-assessments overall correlated well with the objective mentor assessments (Pearson's r 0.8, p 75% of all roles and levels. Conclusion: The role development process during mentoring can be reliably monitored by using MatricS. MatricS scores highly correlate between mentees and mentors, indicating that mentee self-assessments are suitable and sufficient for monitoring. These findings help to lessen the work burden on senior surgeons and thus can help to increase the acceptance of mentoring programs in surgical disciplines

    Peptide inhibitors of Streptomyces DD-carboxypeptidases

    Full text link
    1. Peptides that inhibit the dd-carboxypeptidases from Streptomyces strains albus G and R61 were synthesized. They are close analogues of the substrates of these enzymes. The enzymes from albus G and R61 strains are in general inhibited by the same peptides, but the enzyme from strain R39 differs considerably. 2. The two C-terminal residues of the peptide substrates and inhibitors appear to be mainly responsible for the initial binding of the substrate to the enzymes from albus G and R61 strains. The side chain in the third residue from the C-terminus seems critical in inducing catalytic activity. 3. Experimental evidence is presented suggesting that the amide bond linking the two C-terminal residues has a cis configuration when bound to the enzymes from strains albus G and R61. 4. The peptide inhibitors are not antibiotics against the same micro-organisms

    Sulfite reduction in mycobacteria

    Get PDF
    Mycobacterium tuberculosis places an enormous burden on the welfare of humanity. Its ability to grow and its pathogenicity are linked to sulfur metabolism, which is considered a fertile area for the development of antibiotics, particularly because many of the sulfur acquisition steps in the bacterium are not found in the host. Sulfite reduction is one such mycobacterium-specific step and is the central focus of this paper. Sulfite reduction in Mycobacterium smegmatis was investigated using a combination of deletion mutagenesis, metabolite screening, complementation, and enzymology. The initial rate parameters for the purified sulfite reductase from M. tuberculosis were determined under strict anaerobic conditions [kcat = 1.0 (±0.1) electron consumed per second, and Km(SO3−2) = 27 (±1) μM], and the enzyme exhibits no detectible turnover of nitrite, which need not be the case in the sulfite/nitrite reductase family. Deletion of sulfite reductase (sirA, originally misannotated nirA) reveals that it is essential for growth on sulfate or sulfite as the sole sulfur source and, further, that the nitrite-reducing activities of the cell are incapable of reducing sulfite at a rate sufficient to allow growth. Like their nitrite reductase counterparts, sulfite reductases require a siroheme cofactor for catalysis. Rv2393 (renamed che1) resides in the sulfur reduction operon and is shown for the first time to encode a ferrochelatase, a catalyst that inserts Fe2+ into siroheme. Deletion of che1 causes cells to grow slowly on metabolites that require sulfite reductase activity. This slow-growth phenotype was ameliorated by optimizing growth conditions for nitrite assimilation, suggesting that nitrogen and sulfur assimilation overlap at the point of ferrochelatase synthesis and delivery

    Fluid-structure interaction simulation of prosthetic aortic valves : comparison between immersed boundary and arbitrary Lagrangian-Eulerian techniques for the mesh representation

    Get PDF
    In recent years the role of FSI (fluid-structure interaction) simulations in the analysis of the fluid-mechanics of heart valves is becoming more and more important, being able to capture the interaction between the blood and both the surrounding biological tissues and the valve itself. When setting up an FSI simulation, several choices have to be made to select the most suitable approach for the case of interest: in particular, to simulate flexible leaflet cardiac valves, the type of discretization of the fluid domain is crucial, which can be described with an ALE (Arbitrary Lagrangian-Eulerian) or an Eulerian formulation. The majority of the reported 3D heart valve FSI simulations are performed with the Eulerian formulation, allowing for large deformations of the domains without compromising the quality of the fluid grid. Nevertheless, it is known that the ALE-FSI approach guarantees more accurate results at the interface between the solid and the fluid. The goal of this paper is to describe the same aortic valve model in the two cases, comparing the performances of an ALE-based FSI solution and an Eulerian-based FSI approach. After a first simplified 2D case, the aortic geometry was considered in a full 3D set-up. The model was kept as similar as possible in the two settings, to better compare the simulations' outcomes. Although for the 2D case the differences were unsubstantial, in our experience the performance of a full 3D ALE-FSI simulation was significantly limited by the technical problems and requirements inherent to the ALE formulation, mainly related to the mesh motion and deformation of the fluid domain. As a secondary outcome of this work, it is important to point out that the choice of the solver also influenced the reliability of the final results

    A Conserved Mechanism for Sulfonucleotide Reduction

    Get PDF
    Sulfonucleotide reductases are a diverse family of enzymes that catalyze the first committed step of reductive sulfur assimilation. In this reaction, activated sulfate in the context of adenosine-5′-phosphosulfate (APS) or 3′-phosphoadenosine 5′-phosphosulfate (PAPS) is converted to sulfite with reducing equivalents from thioredoxin. The sulfite generated in this reaction is utilized in bacteria and plants for the eventual production of essential biomolecules such as cysteine and coenzyme A. Humans do not possess a homologous metabolic pathway, and thus, these enzymes represent attractive targets for therapeutic intervention. Here we studied the mechanism of sulfonucleotide reduction by APS reductase from the human pathogen Mycobacterium tuberculosis, using a combination of mass spectrometry and biochemical approaches. The results support the hypothesis of a two-step mechanism in which the sulfonucleotide first undergoes rapid nucleophilic attack to form an enzyme-thiosulfonate (E-Cys-S-SO(3) (−)) intermediate. Sulfite is then released in a thioredoxin-dependent manner. Other sulfonucleotide reductases from structurally divergent subclasses appear to use the same mechanism, suggesting that this family of enzymes has evolved from a common ancestor

    Predictors of packed red cell transfusion after isolated primary coronary artery bypass grafting – The experience of a single cardiac center: A prospective observational study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Preoperative patients' characteristics can predict the need for perioperative blood component transfusion in cardiac surgical operations. The aim of this prospective observational study is to identify perioperative patient characteristics predicting the need for allogeneic packed red blood cell (PRBC) transfusion in isolated primary coronary artery bypass grafting (CABG) operations.</p> <p>Patients and Methods</p> <p>105 patients undergoing isolated, first-time CABG were reviewed for their preoperative variables and followed for intraoperative and postoperative data. Patients were 97 males and 8 females, with mean age 58.28 ± 10.97 years. Regression logistic analysis was used for identifying the strongest perioperative predictors of PRBC transfusion.</p> <p>Results</p> <p>PRBC transfusion was used in 71 patients (67.6%); 35 patients (33.3%) needed > 2 units and 14 (13.3%) of these needed > 4 units. Univariate analysis identified female gender, age > 65 years, body weight ≤ 70 Kg, BSA ≤ 1.75 m<sup>2</sup>, BMI ≤ 25, preoperative hemoglobin ≤ 13 gm/dL, preoperative hematocrit ≤ 40%, serum creatinine > 100 μmol/L, Euro SCORE (standard/logistic) > 2, use of CPB, radial artery use, higher number of distal anastomoses, and postoperative chest tube drainage > 1000 mL as significant predictors. The strongest predictors using multivariate analysis were CPB use, hematocrit, body weight, and serum creatinine.</p> <p>Conclusion</p> <p>The predictors of PRBC transfusion after primary isolated CABG are use of CPB, hematocrit ≤ 40%, weight ≤ 70 Kg, and serum creatinine > 100 μmol/L. This leads to better utilization of blood bank resources and cost-efficient targeted use of expensive blood conservation modalities.</p

    Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis

    Get PDF
    BACKGROUND: Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. RESULTS: Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. CONCLUSIONS: A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis

    The penicillin receptor in Streptomyces

    Full text link
    Kinetics and optical studies of Streptomyces DD-carboxypeptidases-transpeptidases led to the conclusion that the donor, acceptor, and penicillin sites on these enzymes are different but not independent and that penicillin acts as a modifier of the conformation of the protein. In the presence of penicillin, the penicillin-sensitive enzymes would be frozen in a conformation that prevents catalytic activity
    corecore