36 research outputs found

    Réactions des radicaux chlorofluorométhyl péroxyles avec no : étude cinétique dans le domaine de température compris entre 230 et 430 K

    No full text
    Les constantes de vitesse absolues des rĂ©actions d'une sĂ©rie de radicaux chlorofluoromethyl peroxyles CX3O2 avec NO ont Ă©tĂ© dĂ©terminĂ©es pour des tempĂ©ratures comprises entre 230 et 430 K, par photolyse laser pulsĂ©e et spectromĂ©trie de masse rĂ©solue dans le temps. Les rĂ©actions sont rapides, environ deux fois plus rapides que la rĂ©action Ă©quivalente de CH3O2 et prĂ©sentent un coefficient nĂ©gatif de tempĂ©rature. Les expressions des constantes de vitesse sont les suivantes, les unitĂ©s Ă©tant exprimĂ©es en cm3 molecule-1.s-1 : [math] Aucun effet de pression significatif n'a pu ĂȘtre dĂ©tectĂ© entre 1 et 10 Torr. Des mesures de rendements de NO3 ont montrĂ© que CX3O et NO3 sont les produits principaux de la rĂ©action dans le domaine de pression Ă©tudiĂ©

    Photolyse de l’ammoniac Ă  206,2 nm en prĂ©sence d’isobutane rĂ©action des radicaux NH

    No full text
    La rĂ©action photochimique de l’ammoniac en prĂ©sence d'isobutane est Ă©tudiĂ©e en phase gazeuse par excitation Ă  206,2 mm. Un schĂ©ma rĂ©actionnel est dĂ©duit de l’évolution des rendements quantiques des produits, en fonction de divers paramĂštres. Les rĂ©sultats montrent que la rĂ©action du radical NH2 avec l’hydrocarbure joue un rĂŽle important dans la sĂ©quence des rĂ©actions radicalaires. Il est Ă©galement montrĂ© que la rĂ©activitĂ© relative des hydrogĂšnes primaire et tertiaire de l’isobutane est trĂšs diffĂ©rente avec H et NH2

    Gas-Phase Reactivity of the HCO Radical with Unsaturated Hydrocarbons: An Experimental and Theoretical Study

    No full text
    cited By 14International audienceThe kinetics and mechanism of the reactions of HCO radicals with a series of unsaturated hydrocarbons were studied experimentally by the flash photolysis-laser resonance absorption technique and theoretically, in the particular case of ethylene, by ab initio SCF MO calculations with double f basis sets. Experiments were carried out in the temperature range 350–510 K by photolyzing acetaldehyde for the generation of HCO. The Arrhenius expressions obtained are the following, in cm3molecule-1s-1 units: ethylene, (1.5 ± 0.6) X 10-13 exp[-(2750 ± 75 K/T)]; propene, (1.7 ± 0.9) X 10-13 exp[-(2700 ± 100 K/T)]; isobutene, (5.45 ± 2.9) X 10-13, exp[-(3125 ± 130 K/T)]; 1-butene, (3.8 ± 2.7) X 10-13 exp[-(3000 ± 180 K/T)]; 2-butene, (3.3 ±2.8) X 10-13 exp[-(3000 ± 220 K/T]; and 1,3-butadiene, (5.8 ± 1.3) X 10-13 exp[-(2050 ± 50 K/T)]. The uncertainties quoted are equal to 2σ. The reactivity of the HCO radical with respect to that of unsaturated hydrocarbons is compared to that of other radicals. The end-product analysis in the photolysis of the acetaldehyde-olefin (or butadiene) system has shown that the reaction essentially proceeds via an addition mechanism, rather than a hydrogen atom transfer from HCO to the double bond, which is also energetically favorable. This is the first characterized reaction of HCO which does not involve such a hydrogen transfer from the radical. These results are supported by quantum mechanical calculations of the potential energy surfaces involved in the two possible reaction channels. These calculations show in particular that the energy barrier is much higher for the hydrogen atom transfer channel than for the addition process. In addition, calculated activation energies and preexponential factors are in good agreement with experimental results. © 1986, American Chemical Society. All rights reserved
    corecore