22 research outputs found

    Antioxidant-Induced Changes of the AP-1 Transcription Complex Are Paralleled by a Selective Suppression of Human Papillomavirus Transcription

    Get PDF
    Although E6 and E7 themselves possess intrinsic trans-activation capacity on their homologous promoters (14, 52), constitutive expression of E6 or E7 in immortalized or malignantly transformed human keratinocytes is mainly dependent on the availability of a defined set of transcription factors derived from the infected host cell. AP-1, for example, normally consisting of a heterodimer between c-Fos and c-Jun (for a review, see reference 4), seems to play a central role in transcriptional regulation of viral oncogene expression, since point mutations of the corresponding consensus sequences within the upstream regulatory region (URR) of HPV-16 or HPV-18 almost completely abolish the expression of URR-driven reporter plasmids in transient transfection assays Recent studies have shown that trans-activation and the DNA-binding affinity of AP-1 (1, 44) as well as that of other transcription factors such as NF-B (65, 78) or p53 (29) can be modulated not only via posttranslational modifications such as phosphorylation or dephosphorylation (for a review, see ref- erence 31) but also by alterations of the intracellular redox status. This can be achieved by certain cytokines, which are able to induce a prooxidant state within the cell by generating reactive oxygen intermediates (ROIs) Similar prooxidant conditions can also be generated either by exposing cells directly to hydrogen peroxide (40) or by genotoxic stress after UV irradiation (60), leading in both cases to the activation of AP-1 (74) and NF-B (44). While such intracellular redox changes are normally counterbalanced by antioxidant enzymes like Cu-Zn-superoxide dismutases (48) or oxidoreductases such as thioredoxin In a previous study, we showed that tumor necrosis factor alpha-induced transcription of a chemokine gene encoding monocyte chemoattractant protein 1 (MCP-1) could be completely abrogated when nonmalignant HPV-positive cells were incubated with PDTC prior to cytokine addition (57). Consistent with the aforementioned model of redox modulation of specific genes, detailed promoter analysis has revealed that NF-B and AP-1 are indeed the predominant transcription factors involved in the regulation of this particular chemokine Since AP-1 is also a central transcription factor for efficien

    Comprehensive molecular landscape of cetuximab resistance in head and neck cancer cell lines

    Get PDF
    Cetuximab is the sole anti-EGFR monoclonal antibody that is FDA approved to treat head and neck squamous cell carcinoma (HNSCC). However, no predictive biomarkers of cetuximab response are known for HNSCC. Herein, we address the molecular mechanisms underlying cetuximab resistance in an in vitro model. We established a cetuximab resistant model (FaDu), using increased cetuximab concentrations for more than eight months. The resistance and parental cells were evaluated for cell viability and functional assays. Protein expression was analyzed by Western blot and human cell surface panel by lyoplate. The mutational profile and copy number alterations (CNA) were analyzed using whole-exome sequencing (WES) and the NanoString platform. FaDu resistant clones exhibited at least two-fold higher IC50 compared to the parental cell line. WES showed relevant mutations in several cancer-related genes, and the comparative mRNA expression analysis showed 36 differentially expressed genes associated with EGFR tyrosine kinase inhibitors resistance, RAS, MAPK, and mTOR signaling. Importantly, we observed that overexpression of KRAS, RhoA, and CD44 was associated with cetuximab resistance. Protein analysis revealed EGFR phosphorylation inhibition and mTOR increase in resistant cells. Moreover, the resistant cell line demonstrated an aggressive phenotype with a significant increase in adhesion, the number of colonies, and migration rates. Overall, we identified several molecular alterations in the cetuximab resistant cell line that may constitute novel biomarkers of cetuximab response such as mTOR and RhoA overexpression. These findings indicate new strategies to overcome anti-EGFR resistance in HNSCC.This work was supported by Barretos Cancer Hospital and the Public Ministry of Labor Campinas (Research, Prevention, and Education of Occupational Cancer) in Campinas, Brazil, CAPESDFATD (88887.137283/2017-00). INFG is the recipient of a FAPESP Ph.D. fellowship (2017/22305-9)

    From harmful Microcystis blooms to multi-functional core-double-shell microsphere bio-hydrochar materials

    Get PDF
    Harmful algal blooms (HABs) induced by eutrophication is becoming a serious global environmental problem affecting public health and aquatic ecological sustainability. A novel strategy for the utilization of biomass from HABs was developed by converting the algae cells into hollow mesoporous biohydrochar microspheres via hydrothermal carbonization method. The hollow microspheres were used as microreactors and carriers for constructing CaO2 core-mesoporous shell-CaO2 shell microspheres (OCRMs). The CaO2 shells could quickly increase dissolved oxygen to extremely anaerobic water in the initial 40 min until the CaO2 shells were consumed. The mesoporous shells continued to act as regulators restricting the release of oxygen from CaO2 cores. The oxygen-release time using OCRMs was 7 times longer than when directly using CaO2. More interestingly, OCRMs presented a high phosphate removal efficiency (95.6%) and prevented the pH of the solution from rising to high levels in comparison with directly adding CaO2 due to the OH− controlled-release effect of OCRMs. The distinct core-doubleshell micro/nanostructure endowed the OCRMs with triple functions for oxygen controlled-release, phosphorus removal and less impact on water pH. The study is to explore the possibility to prepare smarter bio-hydrochar materials by utilizing algal blooms

    Phenomenological Pedagogy

    No full text

    Silver Alginate Hydrogel Micro- and Nanocontainers for Theranostics: Synthesis, Encapsulation, Remote Release, and Detection

    No full text
    We have designed multifunctional silver alginate hydrogel microcontainers referred to as loaded microcapsules with different sizes by assembling them via a template assisted approach using natural, highly porous calcium carbonate cores. Sodium alginate was immobilized into the pores of calcium carbonate particles of different sizes followed by cross-linking via addition of silver ions, which had a dual purpose: on one hand, the were used as a cross-linking agent, albeit in the monovalent form, while on the other hand they have led to formation of silver nanoparticles. Monovalent silver ions, an unusual cross-linking agent, improve the sensitivity to ultrasound, lead to homogeneous distribution of silver nanoparticles. Silver nanoparticles appeared on the shell of the alginate microcapsules in the twin-structure as determined by transmission electron microscopy. Remote release of a payload from alginate containers by ultrasound was found to strongly depend on the particle size. The possibility to use such particles as a platform for label-free molecule detection based on the surface enhanced Raman scattering was demonstrated. Cytotoxicity and cell uptake studies conducted in this work have revealed that microcontainers exhibit nonessential level of toxicity with an efficient uptake of cells. The above-described functionalities constitute building blocks of a theranostic system, where detection and remote release can be achieved with the same carrier

    A simple non-invasive approach toward efficient transdermal drug delivery based on biodegradable particulate system

    No full text
    Transdermal administration via skin appen- dages enables both localized and systemic drug delivery, as well as minimizes incidental toxicity. However, the design of an appropriate effective method for clinical use remains challenging. Here, we introduce calcium carbonate-based carriers for the transdermal transportation of bioactive substances. The proposed system presents easily manufactur- able biodegradable particles with a large surface area enabling a high payload ability. Topical application of submicron porous CaCO3 particles in rats followed by the therapeutic ultrasound treatment results in their deep penetration through the skin along with plentiful filling of the hair follicles. Exploiting the loading capacity of the porous particles, we demonstrate efficient transportation of a fluorescent marker along the entire depth of the hair follicle down the bulb region. In vivo monitoring of the carrier degradation reveals the active dissolution/ recrystallization of CaCO3 particles, resulting in their total resorption within 12 days. The proposed particulate system serves as an intrafollicular depot for drug storage and prolonged in situ release over this period. The urinary excretion profile proves the systemic absorption of the fluorescent marker. Hence, the elaborated transdermal delivery system looks promising for medical applications. The drug delivery to different target regions of the hair follicle may contribute to regenerative medicine, immunomodulation, and treatment of various skin disorders. In the meantime, the systemic uptake of the transported drug opens an avenue for prospective delivery routes beyond the scope of dermatolog

    Evaluation of DNA Methylation Changes and Micronuclei in Workers Exposed to a Construction Environment

    No full text
    Methylation levels in tumor-suppressor genes and repetitive sequences have previously been used to study the relationship between environmental air pollution and epigenetic changes related to cancer. In this study, we measured the methylation profiles of the promoter regions CDKN2A, MLH1 and APC and the repetitive sequence LINE-1 in 59 workers exposed to the construction environment and in 49 unexposed workers. We also evaluated the micronuclei frequency and levels of trace elements in the blood of all workers. We evaluated of levels of particulate matter and polycyclic aromatic hydrocarbons (PAHs) at the construction site to characterize the environmental exposure. Our findings demonstrated that exposed workers exhibited significantly higher average levels of promoter methylation of CDKN2A, APC, and MLH1 genes and increased hypomethylation of the LINE-1 in comparison to unexposed workers (all p < 0.05). A higher frequency of micronuclei was observed in the exposed group (2 ± 2) compared to the unexposed group (1 ± 1) with p < 0.001. High levels of particulate matter (51–841 μg/m3) and some PAHs were found in samples from the construction environment. In summary, we provide evidence of increased DNA damage and altered DNA methylation of exposed workers, suggesting that genomic approaches to biomonitoring may be an effective way of estimating future cancer risk for construction workers
    corecore