433 research outputs found

    Completely Mixing Quantum Open Systems and Quantum Fractals

    Get PDF
    Departing from classical concepts of ergodic theory, formulated in terms of probability densities, measures describing the chaotic behavior and the loss of information in quantum open systems are proposed. As application we discuss the chaotic outcomes of continuous measurement processes in the EEQT framework. Simultaneous measurement of four noncommuting spin components is shown to lead to a chaotic jump on quantum spin sphere and to generate specific fractal images - nonlinear ifs (iterated function system). The model is purely theoretical at this stage, and experimental confirmation of the chaotic behavior of measuring instruments during simultaneous continuous measurement of several noncommuting quantum observables would constitute a quantitative verification of Event Enhanced Quantum Theory.Comment: Latex format, 20 pages, 6 figures in jpg format. New replacement has two more references (including one to a paper by G. Casati et al on quantum fractal eigenstates), adds example and comments concerning mixing properties of of a two-level atom driven by a laser field, and also adds a number of other remarks which should make it easier to follow mathematical argument

    Theoretical study of dark resonances in micro-metric thin cells

    Full text link
    We investigate theoretically dark resonance spectroscopy for a dilute atomic vapor confined in a thin (micro-metric) cell. We identify the physical parameters characterizing the spectra and study their influence. We focus on a Hanle-type situation, with an optical irradiation under normal incidence and resonant with the atomic transition. The dark resonance spectrum is predicted to combine broad wings with a sharp maximum at line-center, that can be singled out when detecting a derivative of the dark resonance spectrum. This narrow signal derivative, shown to broaden only sub-linearly with the cell length, is a signature of the contribution of atoms slow enough to fly between the cell windows in a time as long as the characteristic ground state optical pumping time. We suggest that this dark resonance spectroscopy in micro-metric thin cells could be a suitable tool for probing the effective velocity distribution in the thin cell arising from the atomic desorption processes, and notably to identify the limiting factors affecting desorption under a grazing incidence.Comment: 12 pages, 11 figures theoretical articl

    A map from 1d Quantum Field Theory to Quantum Chaos on a 2d Torus

    Full text link
    Dynamics of a class of quantum field models on 1d lattice in Heisenberg picture is mapped into a class of `quantum chaotic' one-body systems on configurational 2d torus (or 2d lattice) in Schr\" odinger picture. Continuum field limit of the former corresponds to quasi-classical limit of the latter.Comment: 4 pages in REVTeX, 1 eps-figure include

    Pointwise convergence of Birkhoff averages for global observables

    Full text link
    It is well-known that a strict analogue of the Birkhoff Ergodic Theorem in infinite ergodic theory is trivial; it states that for any infinite-measure-preserving ergodic system the Birkhoff average of every integrable function is almost everywhere zero. Nor does a different rescaling of the Birkhoff sum that leads to a non-degenerate pointwise limit exist. In this paper we give a version of Birkhoff's theorem for conservative, ergodic, infinite-measure-preserving dynamical systems where instead of integrable functions we use certain elements of L∞L^\infty, which we generically call global observables. Our main theorem applies to general systems but requires an hypothesis of "approximate partial averaging" on the observables. The idea behind the result, however, applies to more general situations, as we show with an example. Finally, by means of counterexamples and numerical simulations, we discuss the question of finding the optimal class of observables for which a Birkhoff theorem holds for infinite-measure-preserving systems.Comment: Final version. 33 pages, 10 figure

    Escape orbits and Ergodicity in Infinite Step Billiards

    Full text link
    In a previous paper we defined a class of non-compact polygonal billiards, the infinite step billiards: to a given decreasing sequence of non-negative numbers {pn\{p_{n}, there corresponds a table \Bi := \bigcup_{n\in\N} [n,n+1] \times [0,p_{n}]. In this article, first we generalize the main result of the previous paper to a wider class of examples. That is, a.s. there is a unique escape orbit which belongs to the alpha and omega-limit of every other trajectory. Then, following a recent work of Troubetzkoy, we prove that generically these systems are ergodic for almost all initial velocities, and the entropy with respect to a wide class of ergodic measures is zero.Comment: 27 pages, 8 figure

    Large deviations for ideal quantum systems

    Full text link
    We consider a general d-dimensional quantum system of non-interacting particles, with suitable statistics, in a very large (formally infinite) container. We prove that, in equilibrium, the fluctuations in the density of particles in a subdomain of the container are described by a large deviation function related to the pressure of the system. That is, untypical densities occur with a probability exponentially small in the volume of the subdomain, with the coefficient in the exponent given by the appropriate thermodynamic potential. Furthermore, small fluctuations satisfy the central limit theorem.Comment: 28 pages, LaTeX 2

    ChiMiCapisce

    Get PDF
    This year, for the first time, the Young Chemists Group of the Italian Chemical Society (SCI) organized a national communication contest dedicated to chemists under 35. The contest, called ChiMiCapisce—a play on "Chimica", Italian for chemistry, and "Chi Mi Capisce?", which literally means "Who can understand me?"—was planned as the launch event of the recently established “Dissemination of Chemical Culture” Division of the Italian Chemical Society

    Proceedings of the Merck & Elsevier Young Chemists Symposium (MEYCS 2018)

    Get PDF
    Dear participants, welcome to the 18th edition of the Merck & Elsevier Young Chemists Symposium, formerly SAYCS and MYCS. This conference is an international scientific event organized by the Young Group of the Italian Chemical Society (SCI Giovani) with the financial support of Merck and Elsevier. This symposium is fully devoted to young researchers, such as MSc and PhD students, post-doc fellows and young researchers in companies. All the disciplines of Chemistry are covered: analytical, physical, industrial, organic, inorganic, theoretical, pharmaceutical, biological, environmental, macromolecular and electrochemistry. This year, a special emphasis will be given to chemistry from knowledge to innovation: how chemistry is increasingly present in all of the fields that are essential for human life, and how chemical fundamentals are pushing novel technologies? This year we have the exceptional number of 212 participants; we thank you for the great trust shown towards SCI Giovani, Merck and Elsevier. Enjoy the conference
    • 

    corecore