8,625 research outputs found

    Two techniques enable sampling of filtered and unfiltered molten metals

    Get PDF
    Filtered samples of molten metals are obtained by filtering through a plug of porous material fitted in the end of a sample tube, and unfiltered samples are obtained by using a capillary-tube extension rod with a perforated bucket. With these methods there are no sampling errors or loss of liquid

    Quasirandom Load Balancing

    Full text link
    We propose a simple distributed algorithm for balancing indivisible tokens on graphs. The algorithm is completely deterministic, though it tries to imitate (and enhance) a random algorithm by keeping the accumulated rounding errors as small as possible. Our new algorithm surprisingly closely approximates the idealized process (where the tokens are divisible) on important network topologies. On d-dimensional torus graphs with n nodes it deviates from the idealized process only by an additive constant. In contrast to that, the randomized rounding approach of Friedrich and Sauerwald (2009) can deviate up to Omega(polylog(n)) and the deterministic algorithm of Rabani, Sinclair and Wanka (1998) has a deviation of Omega(n^{1/d}). This makes our quasirandom algorithm the first known algorithm for this setting which is optimal both in time and achieved smoothness. We further show that also on the hypercube our algorithm has a smaller deviation from the idealized process than the previous algorithms.Comment: 25 page

    On Predicting the Solar Cycle using Mean-Field Models

    Full text link
    We discuss the difficulties of predicting the solar cycle using mean-field models. Here we argue that these difficulties arise owing to the significant modulation of the solar activity cycle, and that this modulation arises owing to either stochastic or deterministic processes. We analyse the implications for predictability in both of these situations by considering two separate solar dynamo models. The first model represents a stochastically-perturbed flux transport dynamo. Here even very weak stochastic perturbations can give rise to significant modulation in the activity cycle. This modulation leads to a loss of predictability. In the second model, we neglect stochastic effects and assume that generation of magnetic field in the Sun can be described by a fully deterministic nonlinear mean-field model -- this is a best case scenario for prediction. We designate the output from this deterministic model (with parameters chosen to produce chaotically modulated cycles) as a target timeseries that subsequent deterministic mean-field models are required to predict. Long-term prediction is impossible even if a model that is correct in all details is utilised in the prediction. Furthermore, we show that even short-term prediction is impossible if there is a small discrepancy in the input parameters from the fiducial model. This is the case even if the predicting model has been tuned to reproduce the output of previous cycles. Given the inherent uncertainties in determining the transport coefficients and nonlinear responses for mean-field models, we argue that this makes predicting the solar cycle using the output from such models impossible.Comment: 22 Pages, 5 Figures, Preprint accepted for publication in Ap

    The Interaction Of Multiple Convection Zones In A-type Stars

    Full text link
    A-type stars have a complex internal structure with the possibility of multiple convection zones. If not sufficiently separated, such zones will interact through the convectively stable regions that lie between them. It is therefore of interest to ask whether the typical conditions that exist within such stars are such that these convections zones can ever be considered as disjoint. In this paper we present results from numerical simulations that help in understanding how increasing the distance between the convectively unstable regions are likely to interact through the stable region that separates them. This has profound implications for mixing and transport within these stars.Comment: 9 pages, 15 figures, Preprint accepted for publication in MNRA

    Electrothermal linear actuator

    Get PDF
    Converting electric power into powerful linear thrust without generation of magnetic fields is accomplished with an electrothermal linear actuator. When treated by an energized filament, a stack of bimetallic washers expands and drives the end of the shaft upward

    In--out intermittency in PDE and ODE models

    Get PDF
    We find concrete evidence for a recently discovered form of intermittency, referred to as in--out intermittency, in both PDE and ODE models of mean field dynamos. This type of intermittency (introduced in Ashwin et al 1999) occurs in systems with invariant submanifolds and, as opposed to on--off intermittency which can also occur in skew product systems, it requires an absence of skew product structure. By this we mean that the dynamics on the attractor intermittent to the invariant manifold cannot be expressed simply as the dynamics on the invariant subspace forcing the transverse dynamics; the transverse dynamics will alter that tangential to the invariant subspace when one is far enough away from the invariant manifold. Since general systems with invariant submanifolds are not likely to have skew product structure, this type of behaviour may be of physical relevance in a variety of dynamical settings. The models employed here to demonstrate in--out intermittency are axisymmetric mean--field dynamo models which are often used to study the observed large scale magnetic variability in the Sun and solar-type stars. The occurrence of this type of intermittency in such models may be of interest in understanding some aspects of such variabilities.Comment: To be published in Chaos, June 2001, also available at http://www.eurico.web.co

    Flux-transport dynamos with Lorentz force feedback on differential rotation and meridional flow: Saturation mechanism and torsional oscillations

    Full text link
    In this paper we discuss a dynamic flux-transport dynamo model that includes the feedback of the induced magnetic field on differential rotation and meridional flow. We consider two different approaches for the feedback: meanfield Lorentz force and quenching of transport coefficients such as turbulent viscosity and heat conductivity. We find that even strong feedback on the meridional flow does not change the character of the flux-transport dynamo significantly; however it leads to a significant reduction of differential rotation. To a large degree independent from the dynamo parameters, the saturation takes place when the toroidal field at the base of the convection zone reaches between 1.2 an 1.5 T, the energy converted intomagnetic energy corresponds to about 0.1 to 0.2% of the solar luminosity. The torsional oscillations produced through Lorentz force feedback on differential rotation show a dominant poleward propagating branch with the correct phase relation to the magnetic cycle. We show that incorporating enhanced surface cooling of the active region belt (as proposed by Spruit) leads to an equatorward propagating branch in good agreement with observations.Comment: 15 pages, 12 figures, Accepted for publication in ApJ August 10 issue; corrected typos, corrected referenc

    Deformation of Silica Aerogel During Fluid Adsorption

    Full text link
    Aerogels are very compliant materials - even small stresses can lead to large deformations. In this paper we present measurements of the linear deformation of high porosity aerogels during adsorption of low surface tension fluids, performed using a Linear Variable Differential Transformer (LVDT). We show that the degree of deformation of the aerogel during capillary condensation scales with the surface tension, and extract the bulk modulus of the gel from the data. Furthermore we suggest limits on safe temperatures for filling and emptying low density aerogels with helium.Comment: 8 pages, 5 figures, submitted to PR

    Nitrogen-Vacancy Ensemble Magnetometry Based on Pump Absorption

    Get PDF
    We demonstrate magnetic field sensing using an ensemble of nitrogen-vacancy centers by recording the variation in the pump-light absorption due to the spin-polarization dependence of the total ground state population. Using a 532 nm pump laser, we measure the absorption of native nitrogen-vacancy centers in a chemical vapor deposited diamond placed in a resonant optical cavity. For a laser pump power of 0.4 W and a cavity finesse of 45, we obtain a noise floor of \sim 100 nT/Hz\sqrt{\textrm{Hz}} spanning a bandwidth up to 125 Hz. We project a photon shot-noise-limited sensitivity of \sim 1 pT/Hz\sqrt{\textrm{Hz}} by optimizing the nitrogen-vacancy concentration and the detection method.Comment: 7 pages and 5 figure
    corecore