113 research outputs found

    Promoting patient engagement in cancer genomics research programs: An environmental scan

    Get PDF
    Background: A national priority in the United States is to promote patient engagement in cancer genomics research, especially among diverse and understudied populations. Several cancer genomics research programs have emerged to accomplish this priority, yet questions remain about the meaning and methods of patient engagement. This study explored how cancer genomics research programs define engagement and what strategies they use to engage patients across stages in the conduct of research.Methods: An environmental scan was conducted of cancer genomics research programs focused on patient engagement. Research programs were identified and characterized using materials identified from publicly available sources (e.g., websites), a targeted literature review, and interviews with key informants. Descriptive information about the programs and their definitions of engagement, were synthesized using thematic analysis. The engagement strategies were synthesized and mapped to different stages in the conduct of research, including recruitment, consent, data collection, sharing results, and retention.Results: Ten research programs were identified, examples of which include the Cancer Moonshot Biobank, the MyPART Network, NCI-CONNECT, and the Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. All programs aimed to include understudied or underrepresented populations. Based on publicly available information, four programs explicitly defined engagement. These definitions similarly characterized engagement as being interpersonal, reciprocal, and continuous. Five general strategies of engagement were identified across the programs: 1) digital (such as websites) and 2) non-digital communications (such as radio broadcasts, or printed brochures); 3) partnering with community organizations; 4) providing incentives; and 5) affiliating with non-academic medical centers. Digital communications were the only strategy used across all stages of the conduct of research. Programs tailored these strategies to their study goals, including overcoming barriers to research participation among diverse populations.Conclusion: Programs studying cancer genomics are deeply committed to increasing research participation among diverse populations through patient engagement. Yet, the field needs to reach a consensus on the meaning of patient engagement, develop a taxonomy of patient engagement measures in cancer genomics research, and identify optimal strategies to engage patients in cancer genomics. Addressing these needs could enable patient engagement to fulfill its potential and accelerate the pace of cancer genomic discoveries

    US Fish and Wildlife Service 1979 wetland classification: A review

    Get PDF
    In 1979 the US Fish and Wildlife Service published and adopted a classification of wetlands and deepwater habitats of the United States. The system was designed for use in a national inventory of wetlands. It was intended to be ecologically based, to furnish the mapping units needed for the inventory, and to provide national consistency in terminology and definition. We review the performance of the classification after 13 years of use. The definition of wetland is based on national lists of hydric soils and plants that occur in wetlands. Our experience suggests that wetland classifications must facilitate mapping and inventory because these data gathering functions are essential to management and preservation of the wetland resource, but the definitions and taxa must have ecological basis. The most serious problem faced in construction of the classification was lack of data for many of the diverse wetland types. Review of the performance of the classification suggests that, for the most part, it was successful in accomplishing its objectives, but that problem areas should be corrected and modification could strengthen its utility. The classification, at least in concept, could be applied outside the United States. Experience gained in use of the classification can furnish guidance as to pitfalls to be avoided in the wetland classification process

    Use of a reciprocal transplant study to measure the rate of plant community change in a tidal marsh along a salinity gradient

    Get PDF
    The relationship between environmental factors and the spatial distribution of maintained and actively used burrows of the grapsid crab Helograpsus haswellianus was studied at three saltmarsh sites in southeast Queensland, Australia. The sites had been modified by runnelling for mosquito-control, a method that transports low-amplitude tides to areas of saltmarsh. The study investigated the relationship between burrow density, burrow aperture size, and runnelling, as well as the effect of flooding or non-flooding tides and distance from a tidal source. Responses differed at the three sites. The most consistent pattern across all sites was that active burrows were most numerous between 30 and 50 m from the saltmarsh / mangrove interface at the landward side of the tidal source. At particular sites, there were significant relationships between burrow aperture size, tidal period, and the presence of runnels. Generally, few small burrows occurred low on the shore, while larger burrows were distributed across the shore to 50 m. At naturally dry sites, more burrows occurred within 5 m of the runnel, whereas at naturally wet sites, fewer burrows were found close to the runnel. As runnels transport low-amplitude tides, moisture conditions required for burrowing may very between flooding and non-flooding tides. Overall, the influence of tides on the density of crab burrows and their aperture sizes was of more importance than the presence of runnels alone

    Priorities to Promote Participant Engagement in the Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network.

    Get PDF
    BACKGROUND: Engaging diverse populations in cancer genomics research is of critical importance and is a fundamental goal of the NCI Participant Engagement and Cancer Genome Sequencing (PE-CGS) Network. Established as part of the Cancer Moonshot, PE-CGS is a consortium of stakeholders including clinicians, scientists, genetic counselors, and representatives of potential study participants and their communities. Participant engagement is an ongoing, bidirectional, and mutually beneficial interaction between study participants and researchers. PE-CGS sought to set priorities in participant engagement for conducting the network\u27s research. METHODS: PE-CGS deliberatively engaged its stakeholders in the following four-phase process to set the network\u27s research priorities in participant engagement: (i) a brainstorming exercise to elicit potential priorities; (ii) a 2-day virtual meeting to discuss priorities; (iii) recommendations from the PE-CGS External Advisory Panel to refine priorities; and (iv) a virtual meeting to set priorities. RESULTS: Nearly 150 PE-CGS stakeholders engaged in the process. Five priorities were set: (i) tailor education and communication materials for participants throughout the research process; (ii) identify measures of participant engagement; (iii) identify optimal participant engagement strategies; (iv) understand cancer disparities in the context of cancer genomics research; and (v) personalize the return of genomics findings to participants. CONCLUSIONS: PE-CGS is pursuing these priorities to meaningfully engage diverse and underrepresented patients with cancer and posttreatment cancer survivors as participants in cancer genomics research and, subsequently, generate new discoveries. IMPACT: Data from PE-CGS will be shared with the broader scientific community in a manner consistent with participant informed consent and community agreement

    Vegetative Ecological Characteristics of Restored Reed (Phragmites australis) Wetlands in the Yellow River Delta, China

    Get PDF
    In this study, we compared ecological characteristics of wetland vegetation in a series of restoration projects that were carried out in the wetlands of Yellow River Delta. The investigated characteristics include plant composition structure, species diversity and community similarity in three kinds of Phragmites australis wetlands, i.e. restored P. australis wetlands (R1, R2, R3 and R4: restored in 2002, 2005, 2007 and 2009, respectively), natural P. australis wetland (N) and degraded P. australis wetland (D) to assess the process of wetlands restoration. The coverage of the R1 was 99%, which was similar to natural wetland. Among all studied wetlands, the highest and lowest stem density was observed in R1 and R2, respectively, Plant height and stem diameter show the same trend as N > R2 > R1 > R3 > D > R4. Species diversity of restored P. australis wetlands became closed to natural wetland. Both species richness and Shannon–Wiener index had similar tendency: increased first and then decreased with restored time. The highest species richness and species diversity were observed in R2, while the lowest values of those parameters were found in natural P. australis wetland. Similarity indexes between restored wetlands and natural wetland increased with the restoration time, but they were still less than 50%. The results indicate that the vegetation of P. australis wetlands has experienced a great improvement after several years’ restoration, and it is feasible to restored degraded P. australis wetlands by pouring fresh water into those wetlands in the Yellow River Delta. However, it is notable that costal degraded P. australis wetland in this region may take years to decades to reach the status of natural wetland

    Grain refinement of magnesium alloys: a review of recent research, theoretical developments and their application

    Get PDF
    This paper builds on the ‘‘Grain Refinement of Mg Alloys’’ published in 2005 and reviews the grain refinement research onMg alloys that has been undertaken since then with an emphasis on the theoretical and analytical methods that have been developed. Consideration of recent research results and current theoretical knowledge has highlighted two important factors that affect an alloy’s as-cast grain size. The first factor applies to commercial Mg-Al alloys where it is concluded that impurity and minor elements such as Fe and Mn have a substantially negative impact on grain size because, in combination with Al, intermetallic phases can be formed that tend to poison the more potent native or deliberately added nucleant particles present in the melt. This factor appears to explain the contradictory experimental outcomes reported in the literature and suggests that the search for a more potent and reliable grain refining technology may need to take a different approach. The second factor applies to all alloys and is related to the role of constitutional supercooling which, on the one hand, promotes grain nucleation and, on the other hand, forms a nucleation-free zone preventing further nucleation within this zone, consequently limiting the grain refinement achievable, particularly in low solute-containing alloys. Strategies to reduce the negative impact of these two factors are discussed. Further, the Interdependence model has been shown to apply to a broad range of casting methods from slow cooling gravity die casting to fast cooling high pressure die casting and dynamic methods such as ultrasonic treatment
    corecore