12,895 research outputs found

    Strongly misaligned triple system in SR 24 revealed by ALMA

    Get PDF
    We report the detection of the 1.3 mm continuum and the molecular emission of the disks of the young triple system SR24 by analyzing ALMA (The Atacama Large Millimeter/Submillimter Array) subarcsecond archival observations. We estimate the mass of the disks (0.025 M ⊙ and 4 × 10‑5 M ⊕ for SR24S and SR24N, respectively) and the dynamical mass of the protostars (1.5 M ⊙ and 1.1 M ⊙). A kinematic model of the SR24S disk to fit its C18O (2-1) emission allows us to develop an observational method to determine the tilt of a rotating and accreting disk. We derive the size, inclination, position angle, and sense of rotation of each disk, finding that they are strongly misaligned (108^circ ) and possibly rotate in opposite directions as seen from Earth, in projection. We compare the ALMA observations with 12CO SMA archival observations, which are more sensitive to extended structures. We find three extended structures and estimate their masses: a molecular bridge joining the disks of the system, a molecular gas reservoir associated with SR24N, and a gas streamer associated with SR24S. Finally, we discuss the possible origin of the misaligned SR24 system, concluding that a closer inspection of the northern gas reservoir is needed to better understand it. Fil: Fernandez Lopez, Manuel. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomía; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zapata, L. A.. Universidad Nacional Autónoma de México; MéxicoFil: Gabbasov, R.. Universidad Autónoma del Estado de Hidalgo; Méxic

    Low temperature properties of the triangular-lattice antiferromagnet: a bosonic spinon theory

    Full text link
    We study the low temperature properties of the triangular-lattice Heisenberg antiferromagnet with a mean field Schwinger spin-1/2 boson scheme that reproduces quantitatively the zero temperature energy spectrum derived previously using series expansions. By analyzing the spin-spin and the boson density-density dynamical structure factors, we identify the unphysical spin excitations that come from the relaxation of the local constraint on bosons. This allows us to reconstruct a free energy based on the physical excitations only, whose predictions for entropy and uniform susceptibility seem to be reliable within the temperature range $0< T <0.3J, which is difficult to access by other methods. The high values of entropy, also found in high temperature expansions studies, can be attributed to the roton-like narrowed dispersion at finite temperatures.Comment: 16 pages, 5 figure

    Chandra Reveals Variable Multi-Component X-ray Emission from FU Orionis

    Full text link
    FU Orionis is the prototype of a class of eruptive young stars (``FUors'') characterized by strong optical outbursts. We recently completed an exploratory survey of FUors using XMM-Newton to determine their X-ray properties, about which little was previously known. The prototype FU Ori and V1735 Cyg were detected. The X-ray spectrum of FU Ori was found to be unusual, consisting of a cool moderately-absorbed component plus a hotter component viewed through an absorption column density that is an order of magnitude higher. We present here a sensitive (99 ks) follow-up X-ray observation of FU Ori obtained at higher angular resolution with Chandra ACIS-S. The unusual multi-component spectrum is confirmed. The hot component is centered on FU Ori and dominates the emission above 2 keV. It is variable (a signature of magnetic activity) and is probably coronal emission originating close to FU Ori's surface viewed through cool gas in FU Ori's strong wind or accretion stream. In contrast, the X-ray centroid of the soft emission below 2 keV is offset 0.20 arcsec to the southeast of FU Ori, toward the near-IR companion (FU Ori S). This offset amounts to slightly less than half the separation between the two stars. The most likely explanation for the offset is that the companion contributes significantly to the softer X-ray emission below 2 keV (and weakly above 2 keV). The superimposed X-ray contributions from FU Ori and the companion resolve the paradox posed by XMM-Newton of an apparently single X-ray source viewed through two different absorption columns.Comment: 21 pages, 3 tables, 6 figure

    New X-ray Detections of WNL Stars

    Full text link
    Previous studies have demonstrated that putatively single nitrogen-type Wolf-Rayet stars (WN stars) without known companions are X-ray sources. However, almost all WN star X-ray detections so far have been of earlier WN2 - WN6 spectral subtypes. Later WN7 - WN9 subtypes (also known as WNL stars) have proved more difficult to detect, an important exception being WR 79a (WN9ha). We present here new X-ray detections of the WNL stars WR 16 (WN8h) and WR 78 (WN7h). These new results, when combined with previous detections, demonstrate that X-ray emission is present in WN stars across the full range of spectral types, including later WNL stars. The two WN8 stars observed to date (WR 16 and WR 40) show unusually low X-ray luminosities (Lx) compared to other WN stars, and it is noteworthy that they also have the lowest terminal wind speeds (v_infty). Existing X-ray detections of about a dozen WN stars reveal a trend of increasing Lx with wind luminosity Lwind = (1/2) M_dot v_infty^2, suggesting that wind kinetic energy may play a key role in establishing X-ray luminosity levels in WN stars.Comment: 20 pages, 5 figure

    A rapid staining-assisted wood sampling method for PCR-based detection of pine wood nematode Bursaphelenchus xylophilus in Pinus massoniana wood tissue

    Get PDF
    For reasons of unequal distribution of more than one nematode species in wood, and limited availability of wood samples required for the PCR-based method for detecting pinewood nematodes in wood tissue of Pinus massoniana, a rapid staining-assisted wood sampling method aiding PCR-based detection of the pine wood nematode Bursaphelenchus xylophilus (Bx) in small wood samples of P. massoniana was developed in this study. This comprised a series of new techniques: sampling, mass estimations of nematodes using staining techniques, and lowest limit Bx nematode mass determination for PCR detection. The procedure was undertaken on three adjoining 5-mg wood cross-sections, of 0.5 · 0.5 · 0.015 cm dimension, that were cut from a wood sample of 0.5 · 0.5 · 0.5 cm initially, then the larger wood sample was stained by acid fuchsin, from which two 5-mg wood cross-sections (that adjoined the three 5-mg wood cross-sections, mentioned above) were cut. Nematode-staining-spots (NSSs) in each of the two stained sections were counted under a microscope at 100· magnification. If there were eight or more NSSs present, the adjoining three sections were used for PCR assays. The B. xylophilus – specific amplicon of 403 bp (DQ855275) was generated by PCR assay from 100.00% of 5-mg wood cross-sections that contained more than eight Bx NSSs by the PCR assay. The entire sampling procedure took only 10 min indicating that it is suitable for the fast estimation of nematode numbers in the wood of P. massonina as the prelimary sample selections for other more expensive Bx-detection methods such as PCR assay

    Magnons and Excitation Continuum in XXZ triangular antiferromagnetic model: Application to Ba3CoSb2O9Ba_3CoSb_2O_9

    Get PDF
    We investigate the excitation spectrum of the triangular-lattice antiferromagnetic XXZXXZ model using series expansions and mean field Schwinger bosons approaches. The single-magnon spectrum computed with series expansions exhibits rotonic minima at the middle points of the edges of the Brillouin zone, for all values of the anisotropy parameter in the range 0≤Jz/J≤10\leq J^z/J\leq1. Based on the good agreement with series expansions for the single-magnon spectrum, we compute the full dynamical magnetic structure factor within the mean field Schwinger boson approach to investigate the relevance of the XXZXXZ model for the description of the unusual spectrum found recently in Ba3CoSb2O9Ba_3CoSb_2O_9. In particular, we obtain an extended continuum above the spin wave excitations, which is further enhanced and brought closer to those observed in Ba3CoSb2O9Ba_3CoSb_2O_9 with the addition of a second neighbor exchange interaction approximately 15% of the nearest-neighbor value. Our results support the idea that excitation continuum with substantial spectral-weight are generically present in two-dimensional frustrated spin systems and fractionalization in terms of {\it bosonic} spinons presents an efficient way to describe them.Comment: 8 pages, 4 figure

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-D imaging and spectroscopy and discuss two approaches to device design. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements while minimizing the number and complexity of the electronic readout channels. These devices can achieve similar performance to pixel detectors for both 3-D imaging and spectroscopy. The low channel count approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in applications requiring large area detector arrays. We show two single-sided strip detector concepts. One, previously reported, features rows established with collecting contacts and columns with noncollecting contacts. Another, introduced here, operates on a charge sharing principle and establishes both rows and columns with collecting contacts on the anode surface. In previous work using the earlier strip detector concept we reported simulations and measurements of energy and spatial resolution for prototype 5- and 10-mm-thick CZT detectors. We now present the results of detection efficiency and uniformity measurements conducted on 5-mm-thick detectors using a specific configuration of the front-end electronics and event trigger. We discuss the importance of the detector fabrication processes when implementing this approach

    Readout and performance of thick CZT strip detectors with orthogonal coplanar anodes

    Get PDF
    We report progress in the study of CZT strip detectors featuring orthogonal coplanar anode contacts. The work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements. The novel coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. We report on studies aimed at determining an optimum configuration of the analog signal processing electronics to employ with these detectors. We report measurements of energy and spatial resolution in three dimensions for prototype 5 and 10 mm thick CZT detectors using a set of shaping and summing amplifiers

    Development of CZT strip detector modules for 0.05- to 1-MeV gamma-ray imaging and spectroscopy

    Get PDF
    We report progress in our study of cadmium zinc telluride (CZT) strip detectors featuring orthogonal coplanar anode contacts. We specifically report on the performance, characterization and stability of 5 and 10 mm thick prototype CZT detectors fabricated using material from several manufacturers. Our ongoing work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements with space-based instrumentation. The coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. Minimizing the channel count is important for large balloon or space instruments including coded aperture telescopes (such as MARGIE or EXIST) and Compton imaging telescopes (such as TIGRE or ACT). We also present plans for developing compact, space qualified imaging modules designed for integration into closely packed large area detector arrays. We discuss issues associated with detector module and array electronics design and development

    Single-sided CZT strip detectors

    Get PDF
    We report progress in the study of thick CZT strip detectors for 3-d imaging and spectroscopy and discuss two approaches to device design. We present the spectroscopic, imaging, detection efficiency and response uniformity performance of prototype devices. Unlike double-sided strip detectors, these devices feature both row and column contacts implemented on the anode surface. This electron-only approach circumvents problems associated with poor hole transport in CZT that normally limit the thickness and energy range of double-sided strip detectors. These devices can achieve similar performance to pixel detectors. The work includes laboratory and simulation studies aimed at developing compact, efficient, detector modules for 0.05 to 1 MeV gamma radiation measurements. The low channel count strip detector approach can significantly reduce the complexity and power requirements of the readout electronics. This is particularly important in space-based coded aperture or Compton telescope instruments requiring large area, large volume detector arrays. Such arrays will be required for NASA\u27s Black Hole Finder Probe (BHFP) and Advanced Compton Telescope (ACT)
    • …
    corecore