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We investigate the excitation spectrum of the triangular-lattice antiferromagnetic XXZ model using series
expansion and mean field Schwinger boson approaches. The single-magnon spectrum computed with series
expansion exhibits rotonic minima at the middle points of the edges of the Brillouin zone, for all values of
the anisotropy parameter in the range 0 � J z/J � 1. Based on the good agreement with series expansion for
the single-magnon spectrum, we compute the full dynamical magnetic structure factor within the mean field
Schwinger boson approach to investigate the relevance of the XXZ model for the description of the unusual
spectrum found recently in Ba3CoSb2O9. In particular, we obtain an extended continuum above the spin wave
excitations, which is further enhanced and brought closer to those observed in Ba3CoSb2O9 with the addition of
a second neighbor exchange interaction approximately 15% of the nearest-neighbor value. Our results support
the idea that excitation continuum with substantial spectral-weight are generically present in two-dimensional
frustrated spin systems and fractionalization in terms of bosonic spinons presents an efficient way to describe
them.
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I. INTRODUCTION

The study of two dimensional (2D) quantum spin liquids
(QSL) has been one of the central topics in condensed matter
physics. Aided by frustration and strong quantum fluctuations,
novel quantum spin-liquid phases can emerge in quantum spin
systems, which do not break any symmetry of the Hamiltonian
and there is no local order parameter to unambiguously
characterize them. Consequently, conventional paradigms of
magnetism such as spin waves or Landau-Ginzburg-Wilson
theories turn out to be inadequate [1–6]. Several candidate ma-
terials showing such spin liquid behavior have been indirectly
identified by specific heat or nuclear relaxation measurements
[7], however, a direct experimental detection of QSL remains
elusive.

Another signature of QSL is the emergence of spin- 1
2 frac-

tional excitations, called spinons. They have been predicted
[8] in 1D AF’s and detected [9] by means of inelastic neutron
scattering (INS) experiments. Here, the spinon excitation is
interpreted as a propagating domain wall; while the observed
extended continuum in the spectrum is related to the different
pairs of independently propagating spinons created in the
AF system once spin-1 excitations are exchanged with the
scattering of neutrons.

In 2D the physical origin of spinons and their quantum
statistics is more complex and not fully understood. However,
it is widely believed that the extended continuum observed
with INS in certain 2D compounds may also correspond
to the fractionalization phenomenon. Such a continuum has
been observed in the inorganic compound [10] Cs2CuCl4,
the kagome-lattice Herbertsmithites ZnCu(OH)Cl [11] and,
recently [12], in Ba3CoSb2O9 which is an experimental
realization of the spin- 1

2 triangular antiferromagnet, with very
little spatial distortion [13]. In Cs2CuCl4 the superexchange in-
teractions are spatially anisotropic [10], while in Ba3CoSb2O9

there is enough evidence of anisotropic spin spin interactions

described by the XXZ model in the easy-plane regime but
little deviation from the triangular-lattice geometry [14,15].
While the Herbertsmithite materials remain disordered down
to the lowest measured temperature, at sufficiently low
temperatures, Cs2CuCl4 and Ba3CoSb2O9 are magnetically
ordered, showing helical [10] and 120◦ long range Néel order
[12], respectively. In the case of Cs2CuCl4 the spectrum
shows well defined magnon signals at the Goldstone modes
and a broad continuum with a dominant spectral weight at
higher energies that persist even above the Néel temperature
TN = 0.62 K. Due to the 2D character of the magnetic
interactions this behavior was originally associated with the
experimental realization of 2D spinons [10], however, further
theoretical work showed that spinons in Cs2CuCl4 are actually
of 1D character [16], that is, the combined effect of spatially
anisotropic quantum fluctuations and frustration induce an
unexpected dimensional reduction [5,17,18]. In contrast,
though anisotropic in spin space, the magnetic interactions in
Ba3CoSb2O9 are 2D spatially isotropic. Therefore, the unusual
broad and dominant continuum above the spin wave dispersion
recently found below TN = 3.8 K has been interpreted as a true
2D fractionalization, suggesting that the 120◦ Néel phase of
this compound may be in close proximity to a spin liquid phase
[12,19].

In this article we investigate the energy spectrum of
the triangular AF XXZ model using two complementary
techniques, series expansion (SE) and mean field Schwinger
bosons (SBMF) [20–24]. Series expansion gives reliable
results for the dispersion relation of the single-magnon sector
of the spectrum while a Schwinger bosons mean field allows us
to study the whole energy spectrum with a spinon based theory
through the dynamical magnetic structure factor [20]. In order
to take into account anisotropic exchange interactions within
the SBMF approximation we have used four bond operators,
as proposed by Burkov and Mac Donald within the context
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of quantum Hall bilayers [25]. Our series expansion results
show the presence of rotonlike minima at the middle of the
edges of the Brillouin zone that persist down to the XY model.
Motivated by the good agreement between series expansion
and SBMF theory for the one magnon dispersion relation and
based on the probable proximity of Ba3CoSb2O9 to a spin
liquid phase we study the effect of second neighbor exchange
interactions on the whole spectrum of the XXZ model using
SBMF theory. In particular, we find that a 15% second
neighbor interaction is enough to reproduce an extended
continuum above the magnon excitations. For this frustration
value there is a weakening of the attractive interaction between
the two spinons building up the magnon excitation along with
a strong reduction of the local magnetization. Therefore, our
study provides a consistent calculation supporting the recently
proposed idea of fractionalization of 2D magnon excitations
in Ba3CoSb2O9 [12].

The antiferromagnetic XXZ model is defined as

H =
∑
〈ij〉

[
J
(
Sx

i Sx
j + S

y

i S
y

j

) + J zSz
i S

z
j

]
, (1)

where the sum is over the nearest neighbor sites 〈ij 〉 of a trian-
gular lattice. This Hamiltonian breaks the SU (2) symmetry of
the Heisenberg model down to a U (1) × Z2. In the easy plane
case 0 � J z/J � 1 and in the thermodynamic limit the U (1)
symmetry is broken by the ground state, selecting a 120◦ Néel
order state lying in the x − y plane. This seems to be the case
for the compound Ba3CoSb2O9 below TN = 3.8 K.

II. SERIES EXPANSION CALCULATION

To develop the series expansion, we first rewrite the
Hamiltonian in a rotated basis, where the z axis points along
the local spin direction of the 120◦ ordered phase [26–28].
Then the Hamiltonian is written as H0 + λV , where H0

consists of only Ising terms, with simple eigenstates and a
ground state that corresponds to one of the classical ground
states. All other terms of the Hamiltonian are placed in V .
The parameter λ is introduced artificially as an expansion
parameter. The Hamiltonian of interest is realized at λ = 1.
An additional ordering field term with coefficient t(1 − λ),
with arbitrary t is used to improve the convergence of the
series [27]. Series expansion for the ground state energy and
the order parameter for the 120◦ Néel order were developed
for various values of the anisotropy α = J z/J complete to
order λ11. To analyze the magnetization series, we perform
a change of variables to remove a square-root singularity at
λ = 1 [27,28] and then develop d-log Pade approximants.
The estimated magnetization are shown in Table I where the
reduction of the zero point quantum fluctuations is clearly
observed as anisotropy is increased.

The one-particle effective Hamiltonian is calculated as
a power series in λ for various real-space distances from
which the spectra at any wave vector are readily obtained
by Fourier transformation. These spectra are extrapolated to
λ = 1 by Padé approximants. Calculations were done to order
λ8. We checked that the series for the Heisenberg model
(J z = J ) agreed completely with those obtained before [26].
The SE results are shown in Fig. 1 (magenta dots) where

TABLE I. Local magnetization m of the 120◦ Néel ground state
of the spin- 1

2 antiferromagnetic XXZ model on the triangular lattice
obtained within the present mean field Schwinger bosons (SBMF),
the linear spin wave theory (LSWT), and series expansion.

J z/J SBMF LSWT Series

1 0.2739 0.2386 0.198 ± 0.034
0.8 0.3402 0.3522 0.245 ± 0.026
0.6 0.3663 0.3858 0.283 ± 0.023
0.4 0.3862 0.4096 0.314 ± 0.018
0.0 0.4204 0.4485 0.403 ± 0.005

the predicted single-magnon spectrum shows the expected
Goldstone mode structure at k = (0,0), ± ( 4π

3 ,0) (points O,
Q, and C of Fig. 1) for the isotropic case (J z = J ) and at
k= (0,0) for the anisotropic case (J z < J ). Furthermore, the
SE results exhibit rotonlike minima at the middle points of the
edges of the Brillouin zone (point B of Fig. 1). Though not
shown in the figure we found that the rotonic excitation persists
down to the XY model case (J z/J = 0) [29]. These excitation
should not be identified to the local minima at momentum
k = ±( 4π

3 ,0) whose appearance is due to anisotropy effects.
Originally, for the isotropic Heisenberg case, the rotonic
excitations were described in terms of pairs of spinons [18]
or vortex-antivortex [30] excitations with fermionic character,
or with conventional multimagnon excitations in noncollinear
antiferromagnets [29,31]. Alternatively, it was shown that the
high entropy values found with high temperature expansion
[32] could be reconciled by assuming a bosonic character for
the rotonic excitations [26] which within the Schwinger boson
language can be interpreted as a pair of weakly bound spinon
excitations [33] (see below).

III. SCHWINGER BOSONS FOR THE XXZ MODEL

In this section, we further extend the widely used Schwinger
boson representation to the XXZ model. In contrast to the
isotropic case [20,23] and previous extensions [34,35] of
the anisotropic case, we express the spin spin interaction in
terms of four bond operators, as proposed by Burkov and
MacDonald [25], in order to preserve the original U (1) × Z2

symmetry of the Hamiltonian. Then, the magnetically 120◦
Néel order state that breaks the U (1) symmetry is manifested
by a Schwinger boson condensation which naturally occurs in
the theory without assuming it from the beginning [21,22].

Within the Schwinger bosons representation the spin
operator components are written in terms of spin- 1

2 bosons
b↑ and b↓ as

Ŝx
i = 1

2
(b̂†i↑b̂i↓ + b̂

†
i↓b̂i↑), Ŝ

y

i = 1

2ı
(b̂†i↑b̂i↓ − b̂

†
i↓b̂i↑), (2)

Ŝz
i = 1

2
(b̂†i↑b̂i↑ − b̂

†
i↓b̂i↓), (3)

where the local constraint
∑

σ

b̂
†
iσ b̂iσ = 2s (4)
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FIG. 1. (Color online) Relation dispersion predicted by series expansion (magenta dots) and dynamical structure factor computed within
the reconstructed SBMF theory (intensity curves), along the path of the Brillouin zone shown in the inset, for several anisotropy values. The
LSWT results (thin green line) are shown for comparison. Inset: path of the Brillouin zone, O = (0,0), P = ( 2π

3 ,0), A = (π,0), B = (π, π√
3
),

C = ( 2π

3 , π√
3
), Q = ( 4π

3 ,0), and E = (0, π√
3
). The values of Jz are in units of J .

must be imposed to fulfill the spin algebra. The relevant bond
operators for the XXZ Hamiltonian Eq. (1) are

Âij = 1
2 (bi↑bi↓ − bi↓bj↑), B̂ij = 1

2 (bi↑b
†
j↑ + bi↓b

†
j↓), (5)

Ĉij = 1
2 (bi↑b

†
j↑ − bi↓b

†
j↓), D̂ij = 1

2 (bi↑bj↓ + bi↓bj↑), (6)

where Âij and B̂ij are SU (2) and time reversal invariant, while
Ĉij and D̂ij are U (1) invariant (rotation around z axis) and
change sign, Ĉij → −Ĉij ,D̂ij → −D̂ij , under time reversal
[36]. Then, after writing down the spin operators in terms of
Schwinger bosons, Eq. (1) results in

H = 1

2

∑
〈ij〉

[(J + J z)(: B̂
†
ij B̂ij : −Â

†
ij Âij )

− (J − J z)(: Ĉ
†
ij Ĉij : −D̂

†
ij D̂ij )]. (7)

Noticing that the inversion of Sz
i can be carried on as a time

reversal operation followed by a π angle rotation around z

axis, it is easy to check that the original U (1) × Z2 symmetry
of the XXZ model is preserved by Eq. (7).

A. Mean field approximatiom

Now a nontrivial mean field decoupling of Eqs. (7) can be
implemented as

X̂
†
ij X̂ij ≈ 〈X̂†

ij 〉X̂ij + X̂
†
ij 〈X̂ij 〉 − 〈X̂†

ij 〉〈X̂ij 〉, (8)

where X̂ = Â, B̂, Ĉ, and D̂. From all the possible Ansätze
we choose translational invariant mean field parameters such
as 〈Âij 〉 = ıAij , 〈Ĉij 〉 = ıCij , 〈B̂ij 〉 = Bij , and 〈D̂ij 〉 = Dij

with Aij = −Aji , Cij = −Cji , Bij = Bji , and Dij = Dji

all real. In principle, the resulting mean field Hamiltonian
HMF breaks the time reversal symmetry which followed by

the π angle rotation around z realizes the Sz
i inversion. So,

the Z2 symmetry seems to be broken. However, if HMF is
gauge transformed as G−1

T HMFGT = H ′
MF, where GT : bσ →

bσ e−ı π
4 , time reversal symmetry is restored by H ′

MF and
consequently the Z2 symmetry is also preserved. Actually
we choose the above Ansatz because in the thermodynamic
limit it is compatible with the semiclassical 120◦ Néel state
lying in the x − y plane [37]. Replacing Eq. (8) in Eq. (7)
and following the standard procedure [38] we arrive at the
diagonalized mean field Hamiltonian

ĤMF =
∑

k

ωk↑α
†
k↑αk↑ + ω−k↓α

†
−k↓α−k↓ + EMF, (9)

with the spinon relation dispersion defined as

ωk↑ = ω−k↓ = ωk =
√[

�BC
k + λ

]2 − [
�AD

k

]2
, (10)

with

�BC
k = 1

2

(
1 + J z

J

)
γ B

k − 1

2

(
1 − J z

J

)
γ C

k ,

�AD
k = 1

2

(
1 + J z

J

)
γ A

k − 1

2

(
1 − J z

J

)
γ D

k ,

and

γ A
k =

∑
δ>0

JAδ sin(k · δ), γ B
k =

∑
δ>0

JBδ cos(k · δ),

γ C
k =

∑
δ>0

JCδ sin(k · δ), γ D
k =

∑
δ>0

JDδ cos(k · δ),

where δ = rj − ri are the vectors connecting the first neigh-
bors of the triangular lattice. The ground state mean field
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energy results in

EMF = 1

2

∑
k

ωk − λ(2S + 1)N

= 3N
[
(J + J z)

(
B2

δ − A2
δ

) − (J − J z)
(
C2

δ − D2
δ

)]
.

(11)

Notice that λ is the Lagrange multiplier introduced to enforce,
on average, the local constraint of Eq. (4).

The self consistent mean field equations are

S + 1

2
= 1

2N

∑
k

�BC
k + λ

ωk
, (12)

Aδ = 1

2N

∑
k

�AD
k

ωk
sin (k · δ) , (13)

Bδ = 1

2N

∑
k

�BC
k + λ

ωk
cos (k · δ) , (14)

Cδ = 1

2N

∑
k

�BC
k + λ

ωk
sin (k · δ) , (15)

Dδ = 1

2N

∑
k

�AD
k

ωk
cos (k · δ) . (16)

As we have pointed out the present mean field approxima-
tion preserves the original U (1) × Z2 symmetry of the XXZ
Hamiltonian. Nonetheless, it turns out that the minimum of
the spinon dispersion at Q

2 behaves as ω Q
2

→ 1/N , implying

the occurrence of a Bose condensation of b̂↑ and b̂↓ at
k = Q

2 and k = −Q
2 , respectively, in the thermodynamic

limit [see Eq. (10)]. This is interpreted as the rupture of
the continuous U (1) symmetry. In particular, by working
out the static structure factor the singular mode, k = Q

2 , of
Eqs. (12)–(16) can be simply related to the local magnetization
m and, after converting the sums into integrals, a new set
of self consistent equations is obtained corresponding to the
thermodynamic limit [21,22,39]. Alternatively, there is another
way to compute the local magnetization m that we have
checked to be completely equivalent to the previous one,
which consists of solving the self consistent Eqs. (12)–(16)
for finite size systems and then perform a size scaling of the
expression [38],

m = 1

2N

�BC
Q
2

+ λ

ω Q
2

, (17)

which in the thermodynamic limit corresponds to the singular
mode of Eq. (12) when Q = ( 4π

3 ,0) is the magnetic wave
vector of the 120◦ Néel order. In Table I is shown the local
magnetization m predicted by the SBMF for several anisotropy
values resulting from the extrapolation of Eq. (17) in the
thermodynamic limit. The predictions of series expansion and
linear spin wave theory are also shown for comparison. It is
worth stressing that the SBMF predictions compare quite well
with that of series expansion as soon as anisotropy is increased.

B. Dynamical structure factor

In this subsection we study the spectrum by computing
the zz component of the spin spin dynamical structure factor,
Szz(k,ω)= 1

2π

∫ ∞
∞ 〈Sz

k(t)Sz
−k(0)〉 expıωt dt . The computation

and the interpretation of the spectrum is based on our
previous work performed for the isotropic case [38]. Here
we also work on finite systems so the continuous U (1)
symmetry is, in principle, preserved. However, one can access
the thermodynamic limit by extrapolating from finite size
systems, as we previously did for the local magnetization study
(Sec. III A). In fact, as soon as the long range 120◦ Néel order
is developed in the x − y plane the spectrum corresponding
to the transversal spin-1 excitations can be obtained. Even if
the calculation is similar to the isotropic case we consider it
appropriate to outline again the main steps in order to develop
a self contained subsection and to point out the differences
that turn out for the XXZ case. Following Refs. [38,40,41] the
dynamical structure factor within the mean field Schwinger
bosons results in

Szz(k,ω) = 1

4N

∑
q

(uqvk+q − uk+qvq)2

× δ(ω − (ωq↑ + ωk−q↓)), (18)

where uk = [ 1
2 (1 + �BC

k +λ

ωk
)]

1
2 and vk = sgn(�AD

k )[ 1
2 (−1 +

�BC
k +λ

ωk
)]

1
2 are the coefficients of the Bogoliubov transformation

that diagonalizes ĤMF. Szz(k,ω) consists of two free spinon
excitations that give rise to a continuum. However, two distinct
contributions can be identified in the spectrum,

Szz(k,ω) = Szz
sing(k,ω) + Szz

cont(k,ω), (19)

where the singular part Szz
sing(k,ω) represents the process of

destroying one spinon b− Q
2 ↓ (b Q

2 ↑) of the condensate and

creating another one b
†
k+ Q

2 ↑ (b†
k− Q

2 ↓) in the normal fluid, while

the continuum part Szz
cont(k,ω) corresponds to the process of

creating two spinons in the normal fluid only. Using the fact
that u Q

2
= v Q

2
∼ (Nm)

1
2 and ω Q

2 ↑ = ω Q
2 ↓ ∼ 0, the singular

part can be approximated as

Szz
sing(k,ω) ≈ m

4

(
vk+ Q

2
− uk+ Q

2

)2
δ
(
ω − ωk+ Q

2 ↑
)

+m

4

(
u Q

2 −k − v Q
2 −k

)2
δ
(
ω − ωk− Q

2 ↓
)
, (20)

while the continuum part results are very similar to Eq. (18),

Szz
cont(k,ω) = 1

4N

∑
q

′
(uqvk+q − uk+qvq)2

× δ(ω − (ωq↑ + ωk−q↓)), (21)

except that in the sum over the triangular Brillouin zone the
momentum q satisfying q = Q

2 or k + q = Q
2 are not taken

into account. This is indicated by the primed sum.
From Eq. (20) it is clear that the spectral weight of the

singular part is located at the shifted spinon excitations ωk+ Q
2 ↑

and ωk− Q
2 ↓. However, we have recently shown [38] that—due

to the coefficients in front of each δ function—the spectral
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weight between both shifted spinon dispersions is redistributed
in such a way that if one reconstructs a new dispersion from
those pieces of the spinon dispersions with dominant spectral
weight, the main features of the one magnon dispersion
computed with the series expansion are recovered [18] (see,
for instance, in Fig. 1 the J z = 1 case). Notice that for the
anisotropic case Szz

sing(k,ω) does not contain elastic processes
at k = ±Q. This is in contrast to the isotropic case where
the condensation of up/down flavors occurs at both momenta,
Q
2 and −Q

2 . On the other hand, we have shown [38] that
the remaining weak signal dispersion is related to unphysical
excitations coming from the relaxation of the local constraint.
In fact, to recover the proper low temperature behavior of
thermodynamic properties such unphysical excitations must
be discarded [33]. So, this simple procedure can be conceived
as an approximate manner of carrying on the projection
of the spectrum into the physical Hilbert space which,
even numerically [42], is very difficult to implement in a
calculation. We have called this procedure of reconstructing
the one magnon excitation and eliminating the remnant
weak signal reconstructed mean field Schwinger boson
theory [33].

In Fig. 1 is shown the dynamical structure factor (intensity
curve) within the reconstructed SBMF theory for different
anisotropy values J z/J along with the relation dispersion
predicted by series expansion (SE) and linear spin wave
theory (LSWT). It is observed that the low energy sector
of the spectra predicted by the reconstructed SBMF theory
reproduces quite well, qualitatively and quantitatively, the
one magnon dispersion predicted by series expansion for the
anisotropy range 0.4 � J z/J � 1. This agreement between
the SBMF theory and SE along with that obtained for the local
magnetization (Table I) give a strong support to the Schwinger
boson mean field theory developed in Sec. III for the XXZ
model [43].

IV. APPLICATION TO Ba3CoSb2O9

In this section we explore the possible relation between the
present spectrum of the XXZ model and that found in the INS
experiments of Ba3CoSb2O9. One important difference is that
within the reconstructed SBMF the dominant spectral weight
is mostly located at the low energy sector of the spectrum.
However, given the proximity to a spin liquid phase proposed
in the literature [12], it is important to investigate the spectrum
once the ground state of the XXZ model is pushed near a spin
liquid phase. In our approximation this situation can be induced
by introducing exchange interactions to second neighbors. In
fact, in the isotropic case, it is known [44,45] that there is a
spin liquid phase for moderate J2 values, 0.1 � J2/J � 0.14.
Around these J2 values, and for small anisotropy J z

2 /J2 =
J z/J = 0.8, we have checked that the local magnetization is
still quite robust but it is proximate to a spin liquid phase since
it vanishes abruptly at J2/J ∼ 0.25. In Fig. 2 is shown the
dynamical structure factor (intensity curve) for several values
of J2. As J2 increases there is an important spectral weight
transfer from the low to the high energy sector of the spectrum.
In particular, around J2/J = 0.15 the extended continuum of
two spinon excitations is recovered.

As at the mean field level the spectrum corresponds to two
free spinon excitations, it is important to get some insight about
the spinon spinon interaction once corrections to the mean
field theory are included. Effective gauge field theory [4,24]
predicts that for a commensurate spinon condensed phase there
is a confinement of spinons, giving rise to spin-1 magnon
excitations of the 120◦ Néel order. Within the context of the
Schwinger bosons one should include Gaussian fluctuations
[46] of the mean field parameters which is beyond the scope
of the present work. Instead, we adopt a simpler strategy [33]
that allows us to get a physical insight about the spinon spinon
interactions once J2 is included.

FIG. 2. (Color online) Dynamical structure factor predicted by the reconstructed SBMF theory (intensity curves) along the same path of
the Brillouin zone of Fig. 1 for several second neighbors exchange values. The same anisotropy interaction J z/J = 0.8, between first and
second neighbors, has been selected. Inset: schematic representation of the exchange interactions on the triangular lattice. The values of J2 are
in units of J .
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FIG. 3. (Color online) Spinon spinon interaction Vint predicted
by the SBMF within the first order perturbation theory [Eq. (22)]
for different J2 values and J z/J = 0.8. The values of J2 are in
units of J .

If the XXZ Hamiltonian is split as H = HMF + V , the
interaction term is given by V = H − HMF. Then, the effect of
V on a two free spinon state |2s〉 = |q ↑; p ↓〉 = α

†
q↑α

†
p↓|gs〉

is computed, to first order in perturbation theory, as the energy
of creating two spinons above the ground state as E2s =
〈2s|H |2s〉 − 〈gs|H |gs〉. Therefore, the interaction between
the two spinons results in Vint = E2s − EMF

2s , where EMF
2s =

〈2s|HMF|2s〉 − 〈gs|HMF|gs〉 = ωq↑ + ωp↓ [47]. The spinon
interaction thus calculated turns out to be

Vint = 1

N

[
γq+p(uqvp + vqup)2 + J z

J
γq−p(vqvp − uqup)2

+ J z

J
3(J + J2)

]
, (22)

where γk−p = 1
4

∑
δ Jδ eı(k−p)·δ . In Fig. 3 is plotted the spinon

spinon interaction Vint for a pair of spinons |Q
2 ↑; k − Q

2 ↓〉
building up the lowest magnon excitation of momentum k,
for J z/J = 0.8, J2 = 0 (solid line), and J2 = 0.2 (dashed
line). It is observed that the attraction between two spinons
building up the magnon excitation at k = 0 is very strong,
while for k = ±Q the attraction is still, relatively, important.
On the other hand, for momenta outside the neighborhood
of k = 0 and k = ±Q the attraction of spinon excitations is
much weaker. These results agree with the physical picture of
tightly bound and weakly bound spinons building up the lower
and higher energy magnon excitations, respectively, although
within the context of the first order perturbation theory, it is
not completely justified. Interestingly, as J2 is introduced there
is, in general, a weakening of the spinon spinon interaction
for almost all momenta (dashed line of Fig. 3). These results
give us a deeper insight of the mean field spectrum. For
instance, the spectral weight concentrated at low energy around
points C and Q (see J2 = 0 case of Fig. 2) can be correlated
to the presence of tightly bound pairs of spinons building
up the magnon excitation, whereas as soon as J2 is increased
the spectral weight transfer from low to high energies, along
with the appearance of the extended continuum, can be
consistently interpreted as the proliferation of nearly free pairs
of spinons above the one magnon excitations.

In order to make a closer comparison with the INS
experiments performed in Ba3CoSb2O9, in the botton panel

FIG. 4. (Color online) Bottom panel: dynamical structure factor
predicted by the reconstructed SBMF theory (intensity curves) along
the experimental path [see Fig. 4(d) of Ref. [12]] for J z/J = 0.9. In
the horizontal axis the cut along [H H 0] direction is depicted, in units
of 4π , as in Ref. [12]. Top panel: relative weight of the two spinon
continuum

∫
Szz

cont(k,ω)dω/Szz(k). The value of J2 is in units of J .

of Fig. 4 is shown the spectrum predicted by the SBMF theory
for J2/J = 0.15 and J z/J = 0.9 along the experimental path.
If one compares with Fig. 4(d) of Ref. [12] there is qualitatively
good agreement although the dominant high energy spectral
weight with respect to the magnon excitation is not completely
recovered by the SBMF theory. However, if one separates
the spectral weight Szz

sing(k,ω) of the low energy magnon
excitations from the high energy continuum it is possible
to quantify the relative weight of the two spinon continuum
in the spectrum by computing

∫
Szz

cont(k,ω)dω/Szz(k), where
Szz(k) = ∫

Szz(k,ω)dω. The top panel of Fig. 4 shows an
important amount and k dependence of the continuum contri-
bution for J2 = 0.15.

V. CONCLUSIONS

In conclusion, we have performed a series expansion and a
mean field Schwinger boson study of the antiferromagnetic
XXZ model on the triangular lattice. The series expansion
results reveal a rotonlike excitation minima at the middle points
of the edges of the Brillouin zone for all range of anisotropy
0 � J z/J � 1. On the other hand, we have extended the
Schwinger boson theory to four bond operators and fully
computed static and dynamic properties at the mean field level.
The good agreement between the mean field Schwinger boson
and the series expansion for the spin wave dispersion relation
encouraged us to extend the microscopic model by including
exchange interaction to second neighbors in order to quali-
tatively reproduce the unusual spectrum of the Ba3CoSb2O9

compound. By correlating the main features of the mean field
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spectrum with the spinon spinon interaction we provide a
coherent theoretical calculation supporting the idea [12] that
the extended continuum observed in the INS experiments in
Ba3CoSb2O9 can be interpreted as the fractionalization of
magnon excitations in 2D. Of course, it would be interesting to
test the presence of exchange interaction to second neighbors
in this compound. Another important issue would be to classify
the possible spin liquid phases of the XXZ model within a
projective symmetry group analysis [2,48,49]. Interestingly,
using the Schwinger fermions [50] in the square lattice it has
been recently found that the variety of spin liquid phases for a

Hamiltonian with U (1) × Z2 symmetry is even richer than the
SU (2) symmetry case.
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†
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