18,337 research outputs found

    Development of a 25 - 50 watt high efficiency, X-band, traveling wave tube Quarterly report, Nov. 1970 - Jan. 1971

    Get PDF
    Computer design technique of electron gun for use in spacecraft transmitter

    A digital algorithm for spectral deconvolution with noise filtering and peak picking: NOFIPP-DECON

    Get PDF
    Noise-filtering, peak-picking deconvolution software incorporates multiple convoluted convolute integers and multiparameter optimization pattern search. The two theories are described and three aspects of the software package are discussed in detail. Noise-filtering deconvolution was applied to a number of experimental cases ranging from noisy, nondispersive X-ray analyzer data to very noisy photoelectric polarimeter data. Comparisons were made with published infrared data, and a man-machine interactive language has evolved for assisting in very difficult cases. A modified version of the program is being used for routine preprocessing of mass spectral and gas chromatographic data

    Long time deviation from exponential decay: non-integral power laws

    Full text link
    Quantal systems are predicted to show a change-over from exponential decay to power law decay at very long times. Although most theoretical studies predict integer power-law exponents, recent measurements by Rothe et al. of decay luminescence of organic molecules in solution {Phys. Rev. Lett. 96 (2006) 163601} found non-integer exponents in most cases. We propose a physical mechanism, within the realm of scattering from potentials with long tails, which produces a continuous range of power law exponents. In the tractable case of the repulsive inverse square potential, we demonstrate a simple relation between the strength of the long range tail and the power law exponent. This system is amenable to experimental scrutiny

    The role of virtual reality in built environment education

    Get PDF
    This study builds upon previous research on the integration of Virtual Reality (VR) within the built environment curriculum and aims to investigate the role of VR and three-dimensional (3D) computer modelling on learning and teaching in a school of the built environment. In order to achieve this aim, a number of academic experiences were analysed to explore the applicability and viability of 3D computer modelling and VR into built environment subject areas. Although two-dimensional (2D) representations have been greatly accepted by built environment professions and education, 3D computer representations and VR applications, offering interactivity and immersiveness, are not yet widely accepted. The study attempts to understand the values and challenges of integrating visualisation technologies into built environment teaching and investigates tutors’ perceptions, opinions and concerns with respect to these technologies. The study reports on the integration process and considers how 3D computer modelling and VR technologies can combine with, and extend, the existing range of learning and teaching methods appropriate to different disciplines and programme areas

    Disentanglement and Decoherence without dissipation at non-zero temperatures

    Get PDF
    Decoherence is well understood, in contrast to disentanglement. According to common lore, irreversible coupling to a dissipative environment is the mechanism for loss of entanglement. Here, we show that, on the contrary, disentanglement can in fact occur at large enough temperatures TT even for vanishingly small dissipation (as we have shown previously for decoherence). However, whereas the effect of TT on decoherence increases exponentially with time, the effect of TT on disentanglement is constant for all times, reflecting a fundamental difference between the two phenomena. Also, the possibility of disentanglement at a particular TT increases with decreasing initial entanglement.Comment: 3 page

    Spectra and positions of galactic gamma-ray sources

    Get PDF
    The UCSD/MIT Hard X-Ray and Low Energy Gamma-Ray Experiment aboard HEAO-1 scanned the galactic center region during three epochs in 1977 and 1978 from 13 to 180 keV. The results are presented from the scanning epoch of 1978 September. Twenty-two known 2 to 10 keV source positions were necessary for an acceptable fit to the data. The spectra of the 16 strongest, least confused sources are all consistent with power laws with photon spectral indices ranging from 2.1 to 7.2. Acceptable fits to thermal bremsstrahlung models are also possible for most sources. No one source in this survey can be extrapolated to higher energy to match the intensity of the gamma-ray continuum as measured by HEAO-1 large field of view detectors, which implies that the continuum is a composite of contributions from a number of sources

    A Quarter-Century of Observations of Comet 10P/Tempel 2 at Lowell Observatory: Continued Spin-Down, Coma Morphology, Production Rates, and Numerical Modeling

    Full text link
    We report on photometry and imaging of Comet 10P/Tempel 2 obtained at Lowell Observatory from 1983 through 2011. We measured a nucleus rotation period of 8.950 +/- 0.002 hr from 2010 September to 2011 January. This rotation period is longer than the period we previously measured in 1999, which was itself longer than the period measured in 1988. A nearly linear jet was observed which varied little during a rotation cycle in both R and CN images acquired during the 1999 and 2010 apparitions. We measured the projected direction of this jet throughout the two apparitions and, under the assumption that the source region of the jet was near the comet's pole, determined a rotational pole direction of RA/Dec = 151deg/+59deg from CN measurements and RA/Dec = 173deg/+57deg from dust measurements (we estimate a circular uncertainty of 3deg for CN and 4deg for dust). Different combinations of effects likely bias both gas and dust solutions and we elected to average these solutions for a final pole of RA/Dec = 162 +/- 11deg/+58 +/- 1deg. Photoelectric photometry was acquired in 1983, 1988, 1999/2000, and 2010/2011. The activity exhibited a steep turn-on ~3 months prior to perihelion (the exact timing of which varies) and a relatively smooth decline after perihelion. The activity during the 1999 and 2010 apparitions was similar; limited data in 1983 and 1988 were systematically higher and the difference cannot be explained entirely by the smaller perihelion distance. We measured a "typical" composition, in agreement with previous investigators. Monte Carlo numerical modeling with our pole solution best replicated the observed coma morphology for a source region located near a comet latitude of +80deg and having a radius of ~10deg. Our model reproduced the seasonal changes in activity, suggesting that the majority of Tempel 2's activity originates from a small active region located near the pole.Comment: Accepted by AJ; 29 pages of text (preprint style), 8 tables, 7 figure
    • …
    corecore