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TECHNICAL MEMORANDUM X-64527

A DIGITAL ALGORITHM FOR SPECTRAL DECONVOLUTION
WITH NOISE FILTERING AND PEAK PICKING---

NOFIPP-DECON

INTRODUCTION

NOFIPP-DECON is an acronym for a software package which
performs the following functions:

(1) Noise Filtering (smoothing data)

(2) Peak Picking (location of spectral peaks and shoulders)

(3) Deconvolution (unfolding overlapping epectral peaks)

The algorithms are the result of the application of Savitzky and
Golay's convolute integers and Hook and Seeves' multiparameter optimi-
zation pattern search. The software works rather fast from the
viewpoint of the computer time domain and is applicable to a number of
diverse problems, some of which will be discussed in detail. The output
information is oriented about a graphics display unit which can be
utilized for a man-machine interaction, and this has been done for a few
difficult problems.

This report will discuss the three distinct aspects of NOFIPP-
DECON, indicate the nature of the software, and present the results of
a number of test cases. A flow chart is presented as an appendix. A
brief description of the theory of convolute integers and pattern search
will be presented to clarify the logic used in the software algorithm.

NOISE

Most experimentalists are deeply concerned with the problem of
noise associated with the data that computers receive from the experi-
mental world. This concern arises because much information from an
experiment may be lost as a result of a poor signal-to-noise ratio. The
source of this unwanted noise is usually a combination of ground loops,
transient currents, reading errors, or using equipment at the limits of
its range. In most experiments, the noise can be assumed to be a
random event distributed normally about the true signal. This is a
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Gaussian-shaped distribution, with most of the deviations caused by
noise occurring within one standard deviation of the signal. One can
usually assume that the standard deviation of the noise is independent
of the signal value and is also constant throughout the experiment.

Under such assumptions, it is possible to utilize several tech-
niques for enhancing the signal-to-noise ratio. An example is the simple
RC filter used to remove the high-frequency noise component from an
analog signal. However, analog hardware filters do not satisfactorily
reduce all the noise before the analog signal is digitized [1]. Unfortu-
nately, the noise present in the analog signal carries over into the
digital world. Thus, the need arises for a digital filter which is capable
of complementing the signal-to-noise enhancement which took place in
the analog world. Several of these filters exist [2-4], notably those
resulting from linear operator theory. such as the fast Fourier trans-
form. This report will describe the application of a filter resulting
from regression calculations, least s,3uares theory. The theory behind
this filter can be found in rzr ie texts ghat cover regression calculations
for equal interval data, but Savitzky and Golay in 1964 [5] understood
the power of these calculations from the viewpoint of convolving the
data with a weighting function in the computer. They developed a
universal set of numbers known as convolute integers. As a result of
the application of the convolute integers, smoothing and higher order
derivates are available from a very fast algorithm. These convolute
integers have been applied to develop a fast digital noise filter capable
of locating spectral peaks and shoulders.

THE THEORY OF CONVOLUTING INTEGERS

The theory of convolute integers is well described by Savitzky
and Golay, and a recent correspondence by-Steinier, et al. [6] points
out a minor correction to the theory. The following sections will
describe (1) the nature of the filter, i. e. , the naivet6 of its application;
(2) the relationship between convoluting experimental. data with a
weighting function which leads to the nomenclature convolute integers;
(3) the theory with emphasis on convoluting convoluted data; and (4) a
number of test and actual cases indicating the flow of logic and power
of the technique in noisy experimental data.
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Nature of the Filter

The nature of the filter is that of a moving smoothing average,
equations (1) and (2). The jth data point (Y j ) is modified by the 2m+1

points of which it is the center:

,c	m
Y. = E Ci Yj+1 / N

Y:o = C -3 YT +C -2Ye +C -: Y9 +CO Y tn +C+: Yt: +C+2YI2 
+C 3 Y13 /N (2)

For the moving smoothing average, the coefficients C  are

integers , which are equal to unity, and N is the normalization factor
equal to 2m+ 1. By allowing j to run through the index of the array,
the data are smoothed using only simple arithmetic averaging operations.
It is clear that m can be set to any value, giving a 2m+1 point filter.
It is important to clearly state that raw data points must be held in the
filter at all times; otherwise the filter will be smoothing already
smoothed data points (a recursive type filter). Equation (1) shows that
the filter operates by modifying a given point to be some function of
itself and its nearest neighbors. An RC filter can use only past
information, and this introduces a unidirectional distortion into the
data; i. e. , phase shift. The digital filter, however, takes advantage
of a stored array of data to utilize both past and future points, thus
providing an undistorted filter. Using the building blocks of present-
day digital logic, those who are hardware oriented can see how well
this type logic can be implemented into small, special purpose
mini-logic boxes. The logic of a moving smoothing average can be
applied to smoothing by application of a cubic equation to seven points
or obtaining the first derivative of a quintic by using nine points.

Convolution

The Ci coefficients are called convoluting integers because the
filter can be considered an operator which forms the smoothed data
Y''(t) by integrating the raw data Y(t) with a weighting function w(t).
Since the weighting at a point depends upon the time difference between
the weighted point and the point being smoothed, the filtering operation
can be written as

(1)
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(3)Y e(t)= fw(T)Y(t-T)dT

This integral is defined as the convolution to Y(t) with w(t). In a digital
filter the weighting function is of the form

m
w(T) = E C  6(T+ iVN	 (4)

i=-m

where 6(t) is the Dirac-delta function representing the discrete sampling
of the data. Using this in equation (3) at time t= j gives

M

Y '0) _	 E C i 6(T +i)/N
J
 Y(j - T)dT

L= -m
m	 (5)

C1Y(j+i)/N
i=-m

By equating Y(j+i) with Y. 	 equation (5) is seen to be identical to

equation (1). Thus, the C i I s are known as convoluting integers.

Convolute Integers

While the moving smoothing average works well for a quasi.dc
signal, it tends to drastically distort a curve of large curvature, such
as a peak. Thus, one would like to retain the simplicity of equation (1)
but find a set of convoluting integers which does not alter the shape of
the data. The most commonly used method for smoothly fitting a curve
to a group of data points is the method of least squares; therefore, one
is led to try fitting an nth degree polynomial to 2m+ 1 points such that
the sum of the squares of the residuals is minimized. The goal is to
express the polynomial value at the center point of the curve in terms
of the 2m+1 unsmoothed nearest neighbors and then regard the
polynomial center point as the smoothed value of data. This method
will be seen to provide not only a set of convoluting integers for
smoothing, but also for finding the first n derivatives, following the
format of a moving smoothing average.
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Two assumptions concerning the data must be met if the filter
is to be effective: the data must occur at equally spaced intervals along
the abscissa, and the curve formed by the data in the filter must be
reasonably smooth [5]. The first of these assumptions is always met in
computer work because the abscissa is actually the time interval at
which the data are sampled, and this is equal interval and stable to
0. 01 percent accuracy or better. The second assumption is satisfied if
the analog-to-digital conversion rate is adequate for the frequencies
involved in the experimental data. A comfortable rule of thumb indicates
a sampling rate of at least five times the frequency of the signal.

This report will deal primarily with the filtering of the intensity
since it is the noisiest signal in spectroscopy. The problem is to fit a
polynomial to 2m+1 points and then replace the center point by its
polynomial, or smoothed value. Since the data points are assumed to
be uniformly spaced and odd in number, they can be normalized and
centralized to be integer values centered at zero [7]; the nth degree
polynomial is then of the form

* n
Y, = E b ik	-m<i<m integers values	 (6)
i 

k-0 
k

=b0 +b r i+.	 +bnin

The value at i = 0, the center point, is all that is required;
therefore, clearly Yo = bo . The smoothed value at a point is merely

the first coefficient of the best-fit polynomial centered at the point. By
taking derivatives of the polynomial, one can show

Y =b
0	 0

e; 	 -k

dY0 dYo di 1 df0 b 
at = ai at = of ai - of (7)
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d 8 Yo dYo1	 do  o slb®

dts	 dt (at)" di' (At)'

where At is the constant step size between abscissa points; i.e. , the
analog-to-digital conversion time. Thus, the smoothed value at the
first n derivatives at the center point can be found by solving for the
proper regression coefficients.

The solution for the regression coefficients b  can be found in

numerous texts on regression analysis and will not be given here. One
can show that the soTU on is of the form

m
s!b = E C Y,/ N

is 	 i
i=-m

This is identical to equation (1), with j=0, since the points here
are centralized. Thus, each hs 

and, hence, each derivative can be

evaluated by a set of C. convoluting integers and a normalizing constant1	 i

N. These integers depend on the order of derivates (0 to n), the number
of points (2m+ 1 ), and the order of the polynomial (n< 2m+ 1). Large
tables of these convoluting integers with their corresponding normali-
zation factors can be found in References 5 and 8.

Double Convolution

The real power of this technique comes from the ability to simul-
taneously convolute already convoluted data. This gives one filter the
ability to perform more than one operation simultaneously. Convoluting
two sets of integers results in a single set of integers which perfor.ns
the operations of the two original filters simultaneously. This is
decidedly advantageous-for programming. Thus, if a 2m+ i point nth
order smooth is convolved with a 2p+1 point kth order sth derivative,
the results are

(g)

.

d s Y	 1

dts	N (At)ss

p	 1
E C i, s N

i=-P	 o

M

S,; Cj, 
O 

Yi+j
j=-m

i+j = constant
1
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1	 pm
E	 E Ci Cj	 to Y.+ j

N0N 8 (At) s i= -p j=.m ' s J. 

i+j = constant

1 m+p

N	
E d h Y h

h=.(m+p)

where

dh E Ch OCjo o
i, j
i+j=h

N = No O(pt)s

The C 1, O 's are the convoluting integers of the kth order deri-

vates, the Cj, 01  are those of the nth order smooth, and the d h I s are

those for the combined operations. The resulting filter has 2(m+p)+1
points.

PEAK PICKING

Peak picking entails the location of both peaks and shoulders in
the noisy experimental data. All peaks and shoulders are obtained by
searching for zero crossings in various order derivatives. The beauty
of the convolute integers lies in their ability to double convolute simul-
taneously. Since taking higher order derivatives is equivalent to a
high-pass filter and enhances the noise content of the data, by themselves
higher order derivatives make location of zero crossing more difficult;
but smoothing, which is equivalent to a low-pass filter, can be per-
formed simultaneously while taking of higher order derivatives and
results in a band-pass filter in the sense of linear operator theory.
Double convolution of the data, a derivative with a smooth, results in
band-pass filtering and allows for unambiguous determination of zero
crossings. A more detailed description of the flow chart indicates the
use of double convolution.

(9)
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DECONWOLUTION

The ability to unfold overlapping spectra or to curve fit compli-
cated transcendental expressions will be described under the heading
of deconvolution. For a spectrometer with fin , 1 - resolution, these
methods allow a practical realization of clearly resolving overlapping
peaks and shoulders. For a polarimeter, these methods allow a fast
and easy method for abstracting all the pertinent data from what may
be considered a complicated analytical expression. In either case the
problem reduces to curve fitting an analytical expression where a
number of parameters are allowed to vary in such a manner as to
produce optimal values based upon some user-specified criterion
function; i. e, , least squares.

The Hooke and Jeeves algorithm [8] is a pattern-search approach
t-••-,rd optimizing an N-dimensional vector by satisfying a criterion

5r:.on. As such, the algorithm is ideally suited to optimizing the
parameters associated with deconvolution.

Pattern Search

The algorithm can be described as a 5-part logic (Fig. 1).
First, an effective criterion function must be established. A criterion
function is, by definition, any mathematical representation which is
related to all the parameters in such a fashion that a bad set of
parameters will increase the criterion function while a good set of
parameters will decrease this function, or vice versa. The condition
of least squares is the criterion function in a multiparameter regression
problem. Whereas regression calculations are algebraic and allow the
optimum parameters to be obtained from a solution of a set of normal
equations, no such calculus is available for transcendental expressions.
However, the least squares condition is applicable to a transcendental
expression if one assumes _a normal distribution of data. Therefore,
the criterion function in this multiparameter search algorithm will be
established as a minimization of the root-mean-square deviation
resulting from the transcendental expression and the experimental data.

In any search problem, a starting point must be established. The
better the starting point, the quicker a solution is reached. Therefore,
as much logic as possible should go into establishing good initial values
for the parameters. Good beginnings require algorithms which are
usually unique to each problem and can be the determining factor in the

8
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time required for the pattern search to be effective. The convolute
integer technique of locating peaks and shoulders in conjunction with
noise filtering has proven quite effective in most of these applications. 	 z

The third part of the logic is 'concerned with the step size
associated with each parameter. The step size determines the length
of the move that the parameter is allowed to make in advancing toward
its optimum value. The initial value of the step size for each parameter
can be determined in the following manner. If the initial parameter is
known accurately to two significant digits, variations considered will be
from the third digit on; then step size 0. 9 percent of the initial value
would be appropriate. (This allows approximately 100 percent deviation
in the third digit. ) Care must be exercised not to allow the step size to
be a prime factor of the initial parameter or a prime number. Prime
step sizes can lead to a zero for an intermediate parameter value, and
the search cannot move from such a value.

The last two parts of this 5-part logic are concerned with the
search moves. Two types of move are actually involved in the pattern
search: exploratory steps and pattern or vector displacements. After
the starting point or base point for an iteration has been established,
exploratory steps are taken along each axis in the N-dimensional space
according to the step size defined for each parameter. This exploration
has three possibilities: it may add to or subtract from the value of the
parameter or may leave the parameter unchanged.

The decision to change the parameter in either direction or
retain its original value depends on which choice lowers the root-mean-
square deviation (the value of the criterion function). If the parameter
remains unchanged, the step size associated with that parameter is
halved and the exploration proceeds along another axis, This reduction
in step size represents an increase in sensitivity toward lowering the
criterion function. Exploring each axis in this manner and combining
the results advances the search from the base point to the midpoint for
this iteration and allows a vector direction or a pattern to be established.
The vector direction is then determined by the net displacement between
the base point and the midpoint. Based on the assumption that whatever
constituted a successful exploratory move is likely to do so again, an
advance in the established vector direction is made. The net displace-
ment between the current base point and midpoint is added again to the
midpoint to obtain the final point for the iteration. This final point is
then advanced as far as possible by the net displacement (adding the net

10



displacement to the final point), always examining the criterion function
to assure that the move was good. The major advance toward the
optimum values of the parameters for most problems takes place in the
pattern moves. When a pattern move goes beyond a good point (indicated
by an increase in the root-mean-square deviation), the multiparameter
vector retreats to the last good point, which then acts as the base point
for a new set of exploratory moves, with the reduced step size.

Thus, from the initial base point to the final optimum values of
the parameters, the whole process iterates to produce a lower and
lower step size and, subsequently, a minimum in the criterion function.
The iteration process can be stopped by any number of conditions; e. g.,
a fixed number of iterations, a predetermined lowering of the initial
root-mean-square value or a control on the number of significant digits -.
allowed in each parameter. The latter condition seems to be the most
time consuming.

Constraints

In addition to good initial values of the parameters, the pattern
search needs to be constrained to encourage it to be more efficient.
In all these examples a nonnegativity or less than noise level threshold
constraint is placed on the ordinate values, and the abscissa is con-
strained to be within 10 percent of the actual input data. The constraints
are checked each time a new value is considered for a parameter prior
to calculating the criterion function. In this way the optimization is
bounded to a region of acceptable values.

APPLICATION TO SPECTRAL PROBLEMS

Flow Chart

Input arguments to the computer subroutine are the usual x and
y, representing spectral position and intensity, respectively. An addi-
tional input argument specifies the noise level below which peaks will
not be considered. The actual program has a number of additional
options which are indicated by comment cards and user instructions
for the software package and will not be mentioned here.

An overview of the logic indicates that the input data are smoothed,
peaks and shoulders are considered above a specified noise level, and

11



their respective x and y values are stored in an array. Deconvolutior,
of the stored array is performed according to the criterion function,
and a graphic display of the results is viewed and output for hard copy.
The ability to see the results in a format compatible with the experi-
menter's concept of the problem makes understanding and dissemination
of the output rather easy and comfortable. This is equivalent to the old
wise man's tale that a picture is worth a thousand words. The graphic
display gives both the picture and the complementary annotation.

The user is required to specify the criterion function for decon-
volution and generate the convolute integers appropriate to the noise in
the particular problem. This requires an understanding of the wave
forms appropriate to the problem (either analytical or empirical) and an
understanding of how to generate convolute integers for a variety of
simultaneous operations. The authors are presently preparing compre-
hensive tables of convolute integers for single and double convolution.

Experimental Results

Sources of Data. Figures 2 through 13 represent the test cases
to which the algorithm has been successfully applied. Figure 2 represents
a synthetic mass-spectrum to which noise has been added. The root-
mean-square value of the noise is approximately 0. 12 percent of the
maximum peak (No. 4) and 25 percent of the small peak (No. 1). The
data were generated at 40 points per amu. Figure 2 is used to demon-
strate pe¢1: picking and shoulder location. Figure 3 shows the results
of applying the optimization logic to deconvolution. In all the figures
the dots represent the deconvolved wave forms; the squares represent
their linear summation.

Figures 4 and 5 represent some very noisy experimental data
resulting from a cosmic ray proportional counter associated with the
High Energy Astronomy Observatory (HEAD) experiment and are a good
example of applying the noise filter to actual experimental results. The
curve on the left of each figure is the raw data, and the one on the right
is smoothed, optimized data. The data, recorded on a multichannel
analyzer, were produced by radioactive decay of Fe-55. The right peak
is the photo peak resulting from ion-pair production in the argon of the
detector by 5.9 keV photons produced by K capture in the source. There
is also a probability, although considerably less, that the same photons
will remove a K electron from the argon, causing the so-called escape
peak on the left. The presence of the two peaks is clearly seen in
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Figures 4 and 5. The data rtspresent a very good experimental test of
all aspects of the software._

Figure 6 represents the man-machine interaction in supplying
missing information or deleting undesired results. .Figures 6 and 7
represent an ultraviolet spectrum of potassium squarate from a Cary 14
spectrophotometer. Figures 8 and 9 represent more of the HERO data
which was rather difficult for the computer to work with by itself.

Figure 10 was obtained from a very noisy multispectral photo-
electric polarimeter which requires double convolution noise filter and
curve fitting of a complicated analytical expression by optimization.
The polarimeter is used in nighttime sky studies of the diffuse inter-
stellar light. The smoothed, optimized curve is the continuous line
through the raw data (Fig. 11).

The ability of the graphics display to clearly resolve different
physical theories is depicted in Figures 12 and 13. Figure 12 is a
theory of all Gaussian wave shapes; Figure 13 represents one Poisson
and two Gaussian waves.

Smoothing. All the data that required smoothing were satis-
factorily smoothed by a 9-point cubic smooth, equation (10), with the
exception of the photoelectric polarimeter data.

Y(I) _ (-21[Y(I+4) + Y(I-4)] +
Smoothed 14[Y(I+3)+Y(I-3)]+

output +39[Y(I+2) + Y(I- 2)] +	 (10)
54[Y(I+1) + Y(I- 1)] +
59[Y(I)])	 /231

Note the symmetry in the filter, weighting past and future information
equally and present information most strongly.

The polarimeter data required double convolution because of its
excessive noise content. Here a 9-point cubic smooth and a 5-point
linear smooth were considered simultaneously, resulting in a 13-point
filter, equation (11).
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Y(I) = { [Y(I+6) juY(I-6)] X -21
+ [Y(I+5) + YU-5)] X -7
+ [Y(I+4) + Y(I-4)] X 32

	

+ [Y(I+ 3) + Y(I - 3)] X 86
	

(11)
+ [Y(I +2) + Y(I-2)] X 145
+ [Y(I +1) + Y(I- 1)] X 220
+ [Y(I) 2451 1 /1155

In all these rases the Y(I) smoothed output is merely placed back
into the raw data position of the raw data array, transforming that array
into a smoothed data array. The raw data points necessary for the
filter are merely held in memory, preventing the filter from becoming
recursive in nature (using previously smoothed data points to smooth
raw data points). The filter now moves forward a point by shifting
Y(I) to Y(I- 1) and inputting a new value at the end point in the filter,
Y(I+4) for a 9-point cubic smooth.

Peak Picking. Only smoothed data are considered when
searching for peaks and shoulders. An 11-point storage vector, YS,
contains the smoothed data. To initialize the first 10 points of YS, a
3-point linear average of the first n raw data points is considered,
where n is one less than the number of points used in the smoothing
filter. YS(11) is then set equal to Y(I), smoothed output, and the filter
is now initialized.

If YS(6), the center point of the YS array, is greater than a
user-specified noise level below which no peaks will be considered, the
filter searches for peaks and shoulders. The first derivative is now
foun 7 at YS(6). Since taking of a derivative greatly enhances the noise
content of the data (i.e. , a high-pass filter), the added noise is compen-
sated by a simultaneous linear smooth (i.e., a low-pass filter) which
results in a less ambiguous determination of zero crossings (i.e..
band-pass filtering). Peaks are found by convolving a 5-point cubic
first derivative with a 5-point linear smooth and looking for a zero
crossing in the resulting data, DER 1.

	

DER 1 = 7 (YS S + YS S - YS; - YS4)	 (12)
+ YSZ + YSS - YST - YS 10 .
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1

The search for zero crossings in the value of DER 1; i.e.
sign change, allows one to ignore the normalization factors. To
distinguish peaks from valleys, the sign change at the zero crossover
must be from positive to negative. Thus, if DER 1 and its product with
the derivative at the last point are negative, a peak has occurred
between the points and is located by linear interpolation. To prevent
any remaining noise from appearing as a peak, the program requires
that the intensity rise for at least four consecutive points preceding a
peak. Even the smallest of true peaks should easily exceed this if the
digital converter sampling rat.: is adequate for the analog frequencies
in question.

Figure 2 shows the results of peak picking on the synthetic test
case. Exact values of the five peaks' (No. 1, 2, 3, 4, and 6) spectral
positions and spectral intensities are listed under the input columns.
The peaks actually found are listed under zero crossings; only peak
No. 4 shows a large error, and this was due to an unresolved peak
causing a shoulder.

In Figures 4 and 5, special logic was required for combining
peaks that were not truly resolved but were the result of excessive
noise occurring at the top of the peak. In Figure 5, the small shoulder
was determined Uy the peak picking section of the logic. In Figure 6,
the first two peaks were easily determined by the peak picking logic,
but a man-machine interaction was required for input of the third peak.
Figure 8 is very noisy data which produce an abundance of peaks. Here
the program merely requires activation of a sense switch for manual
intervention of the data prior to executing the optimization deconvolution
logic.

In all the cases, the spectral peaks and positions resulting from
the zero crossings are merely stored in a vector which is considered
as initial input values for the optimization routines.

Shoulder Locater. The second derivative is found at the same
point as the first. Again, the taking of higher order derivatives greatly
enhances the noise level, and compensation is .obtained by further con-
volving the derivatives with a linear smooth. Thus, to find the second
derivative, DER 2, a 5-point linear smooth is combined with a 7-point
cubic second derivative:
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IIIIIII
DER 2=5YS1 +5 YS a +2YS3 -2YS4 -5 YSS -10YS6	

(13)
- 5 YS T - 2 YSS + 2 YS' + 5 YSlo + 5 YS 11

J

	

	 This has the effect of smoothing the data twice without altering
the output YS of smoothed data. A shoulder represents a zero crossing
in the second derivative, which can be distinguished from other inflection
points because the product of the first and third derivatives is positive
at shoulders and negative at other zero crossings. Thus, the second
derivative is checked for zero crossings in a manner similar to that

_	 used for finding peaks. If a zero crossing in this second derivative
is found, a 5-point cubic third derivative combined with a 3-point linear
smooth is calculated:

DER 3 = -YSS + YS4 + YSS - YS? - YSS + YS9	(14)

The product DER 1 X DER 3 then determines whether a shoulder
has been found. The intensity at this point is misleading because of
the influence of the larger peak nearby. Practice has shown that
90 percent of the-intensity is a reasonable guess as to the true peak
height. With exceptionally poor data, even the doubly convoluted
smoothing is often not enough to offset the sensitiveness of the shoulder
finder, and erroneous shoulders maybe located. To overcome this, it
may be necessary to expand the number of points in the filter and
perform an additional linear smooth before finding the second derivative.

Figure 3 represents the action of the shoulder locater acting on
spectral peak No. 5. Figure 5 looks as if the- shoulder locater found
the small peak, but close scrutiny of this particular case indicated1hat
this was a peak.

The shoulders are treated in the same fashion as peaks and loaded
as they occur into the storage array for input to the optimization routine.

Man-Machine Interaction. By activation of a sense switch, a
man-machine interaction can occur prior to executing the deconvolution
aspect of the program. Questions are asked the user which allow him
to delete, modify, or add peaks and shoulders manually. Upon comple-
tion and display of the deconvolution, the user is asked if he is satisfied
with the results or wishes to remodify the results. The program then
asks for the next set of data. The interactive ability is extremely
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valuable in examples such as those depicted in Figures 6 and 8. Lack
of or excessive peaks_ and shoulders were obtained, and what might have
been considered poor data was utilized by the man-machine interaction

Ir	
and provided a useful output.

Deconvolution. The optimization algorithm requires an input
indicating the nature of the wave shape to be deconvoluted. For the
data in Figure 2, the input function is Gaussian, equation (15).

Num	 t
Y = E XX(I) exp - { BETA [(X - XX(I+ 1))/XX(I+1)] -Z }	 ( 15)

I= 1	 `

where X and Y represent smoothed data vectors; XX(I) and XX(I+ 1)
represent storage vectors for spectral peaks, shoulders [XX(I)] and
spectral locations [XX(Ii 1)]; beta is proportional to resolution; and
Num is the number of peaks and shoulders to be considered. Compari-
son of peak No. 4 between Figures 2 and 3, and indeed all the neigh-
boring peaks, shows the improvement resulting from the deconvolution.

The optimization routines can optimize 12 to 20 parameters,
depending upon the roundoff error and word length in the computer. On
an EMR 6050 computer none of these cases indicated error because of
an excessive number of parameters in the algorithm.

The ability to adjust position, intensity, and resolution allows
the wave shape to comfortably adjust itself in 3 degrees of freedom to
fit the smoothed data vectors. This is indicated in Figures 7 and 8,
where the wave shape is expressed by equation (16),

_ X-X BAR
( BETA )	 (16iY=Y max 2	 ,

and Y max, X BAR, and BETA were optimized. There is good agree-
ment between these results and those of Schwartz [7].

In Figures 12 and 13, two theories were considered, one with
all Gaussian wave shapes and another with two Gaussian and one Poissori.
For those cases where three peaks were present, both theories were
exercised and the criterion function adjusted to fit a Poisson function
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for the third peak, equation (17).

Y =f b - c exp (-a)	 (17)	 e

where

a = (X - X BAR + BETA) / (an - BETA)

b = 1.0/an

c = Y max/.17) exp ( - b)

The figures represent the deconvolution of three Gaussian or two
Gauasian and one Poisson curve.. Note the improved fit indicated in
the figures and by the final root-mean-square values with the all.
Gaussian theory.

The polarimeter data, which required double convolution noise
filtering, was curve fit to equation (18),

Y = a + b cos t (wt - 0) .	 (18)

Two cases were considered, one where a, b, w, 0, were optimized and
a second where w was predetermined. The resulting polarization
compared very favorably with Fourier and synchronous detection
methods [9].

CONCLUSIONS

The application of convolute integers with the multiparameter
pattern search lends itself to solving a wide variety of curve-fitting
problems. Displaying the output on a graphics terminal allows all the
parameters of interest to be considered for a man-machine interaction
as the calculations proceed.

The versatility of the patty.;^n search allows any analytical
parameters of interest to be calculated, while the low-pass, high-pass,
band-pass characteristics of the convolute integers not only smooth but
assist in obtaining initial values for inflection points.
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The size of the software would allow use of an 8K minicomputer
(16K with a graphics terminal). Time for a solution in some problems
can become considerable if initial parameters are in great error, but
use of the convolute integer logic has led to rapid convergence; e, g. ,
30 sec for Figure 13.

As Figures 1 through 13 indicate, the entire software package
has provided satisfactory results in a wide variety of problems.
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