122 research outputs found

    Crystal structure and assembly of the functional Nanoarchaeum equitans tRNA splicing endonuclease

    Get PDF
    The RNA splicing and processing endonuclease from Nanoarchaeum equitans (NEQ) belongs to the recently identified (αβ)2 family of splicing endonucleases that require two different subunits for splicing activity. N. equitans splicing endonuclease comprises the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Here, we report the crystal structure of the functional NEQ enzyme at 2.1 Å containing both subunits, as well as that of the NEQ261 subunit alone at 2.2 Å. The functional enzyme resembles previously known α2 and α4 endonucleases but forms a heterotetramer: a dimer of two heterodimers of the catalytic subunit (NEQ205) and the structural subunit (NEQ261). Surprisingly, NEQ261 alone forms a homodimer, similar to the previously known homodimer of the catalytic subunit. The homodimers of isolated subunits are inhibitory to heterodimerization as illustrated by a covalently linked catalytic homodimer that had no RNA cleavage activity upon mixing with the structural subunit. Detailed structural comparison reveals a more favorable hetero- than homodimerization interface, thereby suggesting a possible regulation mechanism of enzyme assembly through available subunits. Finally, the uniquely flexible active site of the NEQ endonuclease provides a possible explanation for its broader substrate specificity

    Light meson spectroscopy from Dalitz plot analyses ηc decays to η0K + K − , η0π + π − , and ηπ + π − produced in two-photon interactions

    Get PDF
    We study the processes γγ → ηc → η0KþK−, η0πþπ−, and ηπþπ− using a data sample of 519 fb−1 recorded with the BABAR detector operating at the SLAC PEP-II asymmetric-energy e+e− collider at center-of-mass energies at and near the Υ(nS) (n = 2, 3, 4) resonances. This is the first observation of the decay ηc → η0KþK− and we measure the branching fraction Γðηc → η0KþK−Þ=ðΓðηc → η0πþπ−Þ 1⁄4 0.644 0.039stat 0.032sys. Significant interference is observed between γγ → ηc → ηπþπ− and the nonresonant two-photon process γγ → ηπþπ−. A Dalitz plot analysis is performed of ηc decays to η0KþK−, η0πþπ−, and ηπþπ−. Combined with our previous analysis of ηc → KK ̄ π, we measure the K 0ð1430Þ parameters and the ratio between its η0K and πK couplings. The decay ηc → η0πþπ− is dominated by the f0ð2100Þ resonance, also observed in J=ψ radiative decays. A new a0(1700)→ ηπ resonance is observed in the ηc → ηπþπ− channel. We also compare ηc decays to η and η0 final states in association with scalar mesons as they relate to the identification of the scalar glueball

    Middle East - North Africa and the millennium development goals : implications for German development cooperation

    Get PDF
              Closed-loop controlled combustion is a promising technique to improve the overall performance of internal combustion engines and Diesel engines in particular. In order for this technique to be implemented some form of feedback from the combustion process is required. The feedback signal is processed and from it combustionrelated parameters are computed. These parameters are then fed to a control process which drives a series of outputs (e.g. injection timing in Diesel engines) to control their values. This paper’s focus lies on the processing and computation that is needed on the feedback signal before this is ready to be fed to the control process as well as on the electronics necessary to support it. A number of feedback alternatives are briefly discussed and for one of them, the in-cylinder pressure sensor, the CA50 (crank angle in which the integrated heat release curve reaches its 50% value) and the IMEP (Indicated Mean Effective Pressure) are identified as two potential control variables. The hardware architecture of a system capable of calculating both of them on-line is proposed and necessary feasibility size and speed considerations are made by implementing critical blocks in VHDL targeting a flash-based Actel ProASIC3 automotive-grade FPGA

    MOBCENTR: A nonhierarchical classification algorithm for exploratory data analysis (EDA)

    No full text

    Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity

    No full text
    Prolyl endopeptidases (PEPs) are a unique class of serine proteases with considerable therapeutic potential for the treatment of celiac sprue. The crystal structures of two didomain PEPs have been solved in alternative configurations, thereby providing insights into the mode of action of these enzymes. The structure of the Sphingomonas capsulata PEP, solved and refined to 1.8-Å resolution, revealed an open configuration of the active site. In contrast, the inhibitor-bound PEP from Myxococcus xanthus was crystallized (1.5-Å resolution) in a closed form. Comparative analysis of the two structures highlights a critical role for the domain interface in regulating interdomain dynamics and substrate specificity. Structure-based mutagenesis of the M. xanthus PEP confirms an important role for several interfacial residues. A salt bridge between Arg-572 and Asp-196/Glu-197 appears to act as a latch for opening or closing the didomain enzyme, and Arg-572 and Ile-575 may also help secure the incoming peptide substrate to the open form of the enzyme. Arg-618 and Asp-145 are responsible for anchoring the invariant proline residue in the active site of this postproline-cleaving enzyme. A model is proposed for the docking of a representative substrate PQPQLPYPQPQLP in the active site, where the N-terminal substrate residues interact extensively with the catalytic domain, and the C-terminal residues stretch into the propeller domain. Given the promise of the M. xanthus PEP as an oral therapeutic enzyme for treating celiac sprue, our results provide a strong foundation for further optimization of the PEP's clinically useful features

    Publications Received

    No full text

    Radium Treatment of Cancer of the Penis

    No full text
    corecore