8 research outputs found

    Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies

    Get PDF
    Fission-fragment mass distributions were measured for U237-240, Np239-242, and Pu241-244 populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction O18+U238 at the Japan Atomic Energy Agency tandem facility. Among them, the data for U240 and Np240,241,242 were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission

    Fission fragments mass distributions of nuclei populated by the multinucleon transfer channels of the 18O + 232Th reaction

    Get PDF
    It is shown that the multinucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multinucleon transfer channels of the 18O +  232Th reaction are used to study fission of fourteen nuclei 231,232,233,234Th, 232,233,234,235,236Pa, and 234,235,236,237,238U. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel, in selected bins of excitation energy. In particular, the mass distributions of 231,234Th and 234,235,236Pa are measured for the first time. Predominantly asymmetric fission is observed at low excitation energies for all studied cases, with a gradual increase of the symmetric mode towards higher excitation energy. The experimental distributions are found to be in general agreement with predictions of the fluctuation–dissipation model

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    Get PDF
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation

    Study of Fission Using Multi-Nucleon Transfer Reactions

    No full text
    International audienceIt is shown that the multi-nucleon transfer reactions is a powerful tool to study fission of exotic neutron-rich actinide nuclei, which cannot be accessed by particle-capture or heavy-ion fusion reactions. In this work, multi-nucleon transfer channels of the reactions of 18O+232Th, 18O+238U and 18O+248Cm are used to study fission for various nuclei from many excited states. Identification of fissioning nuclei and of their excitation energy is performed on an event-by-event basis, through the measurement of outgoing ejectile particle in coincidence with fission fragments. Fission fragment mass distributions are measured for each transfer channel. The experimental data are compared to a calculation based on the fluctuation-dissipation model. Role of multi-chance fission in fission fragment mass distributions is discussed

    Fission Study of Actinide Nuclei Using Multi-nucleon Transfer Reactions

    Get PDF
    Scientific Workshop on Nuclear Fission Dynamics and the Emission of Prompt Neutrons and Gamma Rays, THEORY-3We have developed a set up to measure fission properties of excited compound nuclei populated by multi-nucleon transfer reactions. This approach has an advantage that we can study fission of neutron-rich nuclei which cannot be accessed by particle or charged-particle capture reactions. Unique feature in our setup is that we can produce fission data for many nuclei depending on different transfer channels. Also wide excitation energy range can be covered in this set up, allowing us to measure the excitation energy dependence of the fission properties. Preliminary data obtained in the [18]O + [238]U reaction will be presented

    Effects of the nuclear structure of fission fragments on the high-energy prompt fission Îł\gamma-ray spectrum in 235U(nth,f)^{235}\mathrm{U}({n}_{\mathrm{th}},f)

    No full text
    The prompt fission γ-ray energy spectrum for cold-neutron-induced fission of U235 was measured in the energy range Eγ=0.8–20MeV, by gaining a factor of about 105 in statistics compared to the measurements performed so far. The spectrum exhibits local bump structures at Eγ≈4MeV and ≈6MeV, and also a broad one at ≈15MeV. In order to understand the origins of these bumps, the γ-ray spectra were calculated using a statistical Hauser-Feshbach model, taking into account the deexcitation of all the possible primary fission fragments. It is shown that the bump at ≈4MeV is created by the transitions between the discrete levels in the fragments around Sn132, and the bump at ≈6MeV mostly comes from the complementary light fragments. It is also indicated that a limited number of nuclides, which have high-spin states at low excitation energies, can contribute to the bump structure around Eγ≈15MeV, induced by the transition feeding into the low-lying high-spin states

    Persistent anthrax as a major driver of wildlife mortality in a tropical rainforest

    No full text
    Anthrax is a globally important animal disease and zoonosis. Despite this, our current knowledge of anthrax ecology is largely limited to arid ecosystems, where outbreaks are most commonly reported. Here we show that the dynamics of an anthrax-causing agent, Bacillus cereus biovar anthracis, in a tropical rainforest have severe consequences for local wildlife communities. Using data and samples collected over three decades, we show that rainforest anthrax is a persistent and widespread cause of death for a broad range of mammalian hosts. We predict that this pathogen will accelerate the decline and possibly result in the extirpation of local chimpanzee (Pan troglodytes verus) populations. We present the epidemiology of a cryptic pathogen and show that its presence has important implications for conservation
    corecore