885 research outputs found

    Helium-ignited violent mergers as a unified model for normal and rapidly declining Type Ia Supernovae

    Full text link
    The progenitors of Type Ia Supernovae (SNe Ia) are still unknown, despite significant progress during the last years in theory and observations. Violent mergers of two carbon--oxygen (CO) white dwarfs (WDs) are one candidate suggested to be responsible for at least a significant fraction of normal SNe Ia. Here, we simulate the merger of two CO WDs using a moving-mesh code that allows for the inclusion of thin helium (He) shells (0.01\,\msun) on top of the WDs, at an unprecedented numerical resolution. The accretion of He onto the primary WD leads to the formation of a detonation in its He shell. This detonation propagates around the CO WD and sends a converging shock wave into its core, known to robustly trigger a second detonation, as in the well-known double-detonation scenario for He-accreting CO WDs. However, in contrast to that scenario where a massive He shell is required to form a detonation through thermal instability, here the He detonation is ignited dynamically. Accordingly the required He-shell mass is significantly smaller, and hence its burning products are unlikely to affect the optical display of the explosion. We show that this scenario, which works for CO primary WDs with CO- as well as He-WD companions, has the potential to explain the different brightness distributions, delay times and relative rates of normal and fast declining SNe Ia. Finally, we discuss extensions to our unified merger model needed to obtain a comprehensive picture of the full observed diversity of SNe Ia.Comment: accepted for publication by ApJL, significant changes to first version, including addition of merger simulatio

    Testing for redshift evolution of Type Ia supernovae using the strongly lensed PS1-10afx at z=1.4z=1.4

    Full text link
    The light from distant supernovae (SNe) can be magnified through gravitational lensing when a foreground galaxy is located along the line of sight. This line-up allows for detailed studies of SNe at high redshift that otherwise would not be possible. Spectroscopic observations of lensed high-redshift Type Ia supernovae (SNe Ia) are of particular interest since they can be used to test for evolution of their intrinsic properties. The use of SNe Ia for probing the cosmic expansion history has proven to be an extremely powerful method for measuring cosmological parameters. However, if systematic redshift-dependent properties are found, their usefulness for future surveys could be challenged. We investigate whether the spectroscopic properties of the strongly lensed and very distant SN Ia PS1-10afx at z=1.4z=1.4 deviates from the well-studied populations of normal SNe Ia at nearby or intermediate distance. We created median spectra from nearby and intermediate-redshift spectroscopically normal SNe Ia from the literature at -5 and +1 days from light-curve maximum. We then compared these median spectra to those of PS1-10afx. We do not find signs of spectral evolution in PS1-10afx. The observed deviation between PS1-10afx and the median templates are within what is found for SNe at low- and intermediate-redshift. There is a noticeable broad feature centred at λ∼3500\rm \lambda\sim 3500~\AA{}, which is present only to a lesser extent in individual low and intermediate redshift SN Ia spectra. From a comparison with a recently developed explosion model, we find this feature to be dominated by iron peak elements, in particular, singly ionized cobalt and chromium.Comment: accepted for publication in section 4. Extragalactic astronomy of Astronomy and Astrophysic

    Applying the expanding photosphere and standardized candle methods to Type II-Plateau supernovae at cosmologically significant redshifts: the distance to SN 2013eq

    Get PDF
    Based on optical imaging and spectroscopy of the Type II-Plateau SN 2013eq, we present a comparative study of commonly used distance determination methods based on Type II supernovae. The occurrence of SN 2013eq in the Hubble flow (z = 0.041 +/- 0.001) prompted us to investigate the implications of the difference between "angular" and "luminosity" distances within the framework of the expanding photosphere method (EPM) that relies upon a relation between flux and angular size to yield a distance. Following a re-derivation of the basic equations of the EPM for SNe at non-negligible redshifts, we conclude that the EPM results in an angular distance. The observed flux should be converted into the SN rest frame and the angular size, theta, has to be corrected by a factor of (1+z)^2. Alternatively, the EPM angular distance can be converted to a luminosity distance by implementing a modification of the angular size. For SN 2013eq, we find EPM luminosity distances of D_L = 151 +/- 18 Mpc and D_L = 164 +/- 20 Mpc by making use of different sets of dilution factors taken from the literature. Application of the standardized candle method for Type II-P SNe results in an independent luminosity distance estimate (D_L = 168 +/- 16 Mpc) that is consistent with the EPM estimate.Comment: 12 pages, 4 figures, accepted by A&

    Oxygen emission in remnants of thermonuclear supernovae as a probe for their progenitor system

    Get PDF
    Recent progress in numerical simulations of thermonuclear supernova explosions brings up a unique opportunity in studying the progenitors of Type Ia supernovae. Coupling state-of-the-art explosion models with detailed hydrodynamical simulations of the supernova remnant evolution and the most up-to-date atomic data for X-ray emission calculations makes it possible to create realistic synthetic X-ray spectra for the supernova remnant phase. Comparing such spectra with high quality observations of supernova remnants could allow to constrain the explosion mechanism and the progenitor of the supernova. The present study focuses in particular on the oxygen emission line properties in young supernova remnants, since different explosion scenarios predict a different amount and distribution of this element. Analysis of the soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and confrontation with remnant models for different explosion scenarios suggests that SNR 0509-67.5 could originate from a delayed detonation explosion and SNR 0519-69.0 from an oxygen-rich merger.Comment: 8 pages, 4 figures, MNRAS accepte

    Constraints on the origin of the first light from SN2014J

    Get PDF
    We study the very early lightcurve of supernova 2014J (SN 2014J) using the high-cadence broad-band imaging data obtained by the Kilodegree Extremely Little Telescope (KELT), which fortuitously observed M 82 around the time of the explosion, starting more than two months prior to detection, with up to 20 observations per night. These observations are complemented by observations in two narrow-band filters used in an Hα\alpha survey of nearby galaxies by the intermediate Palomar Transient Factory (iPTF) that also captured the first days of the brightening of the \sn. The evolution of the lightcurves is consistent with the expected signal from the cooling of shock heated material of large scale dimensions, \gsim 1 R_{\odot}. This could be due to heated material of the progenitor, a companion star or pre-existing circumstellar environment, e.g., in the form of an accretion disk. Structure seen in the lightcurves during the first days after explosion could also originate from radioactive material in the outer parts of an exploding white dwarf, as suggested from the early detection of gamma-rays. The model degeneracy translates into a systematic uncertainty of ±0.3\pm 0.3 days on the estimate of the first light from SN 2014J.Comment: Accepted by ApJ. Companion paper by Siverd et al, arXiv:1411.415

    Type Iax SNe as a few-parameter family

    Get PDF
    We present direct spectroscopic modeling of five Type Iax supernovae (SNe) with the one dimensional Monte Carlo radiative transfer code TARDIS. The abundance tomography technique is used to map the chemical structure and physical properties of the SN atmosphere. Through via fitting of multiple spectral epochs with self-consistent ejecta models, we can then constrain the location of some elements within the ejecta. The synthetic spectra of the best-fit models are able to reproduce the flux continuum and the main absorption features in the whole sample. We find that the mass fractions of IGEs and IMEs show a decreasing trend toward the outer regions of the atmospheres using density profiles similar to those of deflagration models in the literature. Oxygen is the only element, which could be dominant at higher velocities. The stratified abundance structure contradicts the well-mixed chemical profiles predicted by pure deflagration models. Based on the derived densities and abundances, a template model atmosphere is created for the SN Iax class and compared to the observed spectra. Free parameters are the scaling of the density profile, the velocity shift of the abundance template, and the peak luminosity. The results of this test support the idea that all SNe Iax can be described by a similar internal structure, which argues for a common origin of this class of explosions.Comment: 21 pages, 7 tables, 16 figures, accepted by MNRA

    Three-dimensional simulations of the interaction between Type Ia supernova ejecta and their main sequence companions

    Full text link
    The identity of the progenitor systems of SNe Ia is still uncertain. In the single-degenerate (SD) scenario, the interaction between the SN blast wave and the outer layers of a main sequence (MS) companion star strips off H-rich material which is then mixed into the ejecta. Strong contamination of the SN ejecta with stripped material could lead to a conflict with observations of SNe Ia. This constrains the SD progenitor model. In this work, our previous simulations based on simplified progenitor donor stars have been updated by adopting more realistic progenitor-system models that result from fully detailed, state-of-the-art binary evolution calculations. We use Eggleton's stellar evolution code including the optically thick accretion wind model and the possibility of the effects of accretion disk instabilities to obtain realistic models of companions for different progenitor systems. The impact of the SN blast wave on these companion stars is followed in three-dimensional hydrodynamic simulations employing the SPH code GADGET3. We find that the stripped masses range from 0.11 to 0.18 M_sun. The kick velocity is between 51 and 105 km/s. We find that the stripped mass and kick velocity depend on the ratio of the orbital separation to the radius of a companion. They can be fitted by a power law for a given companion model. However, the structure of the companion star is also important for the amount of stripped material. With more realistic companion star models than in previous studies, our simulations show that the H masses stripped from companions are inconsistent with the best observational limits (< 0.01 M_sun) derived from nebular spectra. However, a rigorous forward modeling based on impact simulations with radiation transfer is required to reliably predict observable signatures of the stripped H and to conclusively assess the viability of the considered SN Ia progenitor scenario.Comment: 14 pages, 13 figures, accepted for publication by A&

    Type Ia supernovae from exploding oxygen-neon white dwarfs

    Get PDF
    The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs (WDs), but for many of the explosion scenarios, particularly those involving the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch WD), there is also a possibility of having an oxygen-neon (ONe) WD as progenitor. We simulate detonations of ONe WDs and calculate synthetic observables from these models. The results are compared with detonations in CO WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic explosion simulations of detonations in initially hydrostatic ONe WDs for a range of masses below the Chandrasekhar mass (M Ch), followed by detailed nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The results are used to calculate synthetic spectra and light curves, which are then compared with observations of SNe Ia. We also perform binary evolution calculations to determine the number of SNe Ia involving ONe WDs relative to the number of other promising progenitor channels. The ejecta structures of our simulated detonations in sub-M Ch ONe WDs are similar to those from CO WDs. There are, however, small systematic deviations in the mass fractions and the ejecta velocities. These lead to spectral features that are systematically less blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions are similar to those obtained from CO models. Our binary evolution calculations show that a significant fraction (3-10%) of potential progenitor systems should contain an ONe WD. The comparison of our ONe models with our CO models of comparable mass (1.2 Msun) shows that the less blueshifted spectral features fit the observations better, although they are too bright for normal SNe Ia.Comment: 6 pages, 5 figure

    Deflagrations in hybrid CONe white dwarfs: a route to explain the faint Type Iax supernova 2008ha

    Full text link
    Stellar evolution models predict the existence of hybrid white dwarfs (WDs) with a carbon-oxygen core surrounded by an oxygen-neon mantle. Being born with masses ~1.1 Msun, hybrid WDs in a binary system may easily approach the Chandrasekhar mass (MCh) by accretion and give rise to a thermonuclear explosion. Here, we investigate an off-centre deflagration in a near-MCh hybrid WD under the assumption that nuclear burning only occurs in carbon-rich material. Performing hydrodynamics simulations of the explosion and detailed nucleosynthesis post-processing calculations, we find that only 0.014 Msun of material is ejected while the remainder of the mass stays bound. The ejecta consist predominantly of iron-group elements, O, C, Si and S. We also calculate synthetic observables for our model and find reasonable agreement with the faint Type Iax SN 2008ha. This shows for the first time that deflagrations in near-MCh WDs can in principle explain the observed diversity of Type Iax supernovae. Leaving behind a near-MCh bound remnant opens the possibility for recurrent explosions or a subsequent accretion-induced collapse in faint Type Iax SNe, if further accretion episodes occur. From binary population synthesis calculations, we find the rate of hybrid WDs approaching MCh to be on the order of 1 percent of the Galactic SN Ia rate.Comment: 9 pages, 7 figures, 2 tables, accepted for publication in MNRA

    The peculiar Type Ia supernova iPTF14atg: Chandrasekhar-mass explosion or violent merger?

    Get PDF
    iPTF14atg, a subluminous peculiar Type Ia supernova (SN Ia) similar to SN 2002es, is the first SN Ia for which a strong UV flash was observed in the early-time light curves. This has been interpreted as evidence for a single-degenerate (SD) progenitor system where such a signal is expected from interactions between the SN ejecta and the non-degenerate companion star. Here, we compare synthetic observables of multi-dimensional state-of-the-art explosion models for different progenitor scenarios to the light curves and spectra of iPTF14atg. From our models, we have difficulties explaining the spectral evolution of iPTF14atg within the SD progenitor channel. In contrast, we find that a violent merger of two carbon-oxygen white dwarfs with 0.9 and 0.76 solar masses, respectively, provides an excellent match to the spectral evolution of iPTF14atg from 10d before to several weeks after maximum light. Our merger model does not naturally explain the initial UV flash of iPTF14atg. We discuss several possibilities like interactions of the SN ejecta with the circum-stellar medium and surface radioactivity from a He ignited merger that may be able to account for the early UV emission in violent merger models.Comment: 12 pages, 7 figures, accepted for publication in MNRA
    • …
    corecore