The progenitor problem of Type Ia supernovae (SNe Ia) is still unsolved. Most
of these events are thought to be explosions of carbon-oxygen (CO) white dwarfs
(WDs), but for many of the explosion scenarios, particularly those involving
the externally triggered detonation of a sub-Chandrasekhar mass WD (sub-M Ch
WD), there is also a possibility of having an oxygen-neon (ONe) WD as
progenitor. We simulate detonations of ONe WDs and calculate synthetic
observables from these models. The results are compared with detonations in CO
WDs of similar mass and observational data of SNe Ia. We perform hydrodynamic
explosion simulations of detonations in initially hydrostatic ONe WDs for a
range of masses below the Chandrasekhar mass (M Ch), followed by detailed
nucleosynthetic postprocessing with a 384-isotope nuclear reaction network. The
results are used to calculate synthetic spectra and light curves, which are
then compared with observations of SNe Ia. We also perform binary evolution
calculations to determine the number of SNe Ia involving ONe WDs relative to
the number of other promising progenitor channels. The ejecta structures of our
simulated detonations in sub-M Ch ONe WDs are similar to those from CO WDs.
There are, however, small systematic deviations in the mass fractions and the
ejecta velocities. These lead to spectral features that are systematically less
blueshifted. Nevertheless, the synthetic observables of our ONe WD explosions
are similar to those obtained from CO models. Our binary evolution calculations
show that a significant fraction (3-10%) of potential progenitor systems should
contain an ONe WD. The comparison of our ONe models with our CO models of
comparable mass (1.2 Msun) shows that the less blueshifted spectral features
fit the observations better, although they are too bright for normal SNe Ia.Comment: 6 pages, 5 figure