Recent progress in numerical simulations of thermonuclear supernova
explosions brings up a unique opportunity in studying the progenitors of Type
Ia supernovae. Coupling state-of-the-art explosion models with detailed
hydrodynamical simulations of the supernova remnant evolution and the most
up-to-date atomic data for X-ray emission calculations makes it possible to
create realistic synthetic X-ray spectra for the supernova remnant phase.
Comparing such spectra with high quality observations of supernova remnants
could allow to constrain the explosion mechanism and the progenitor of the
supernova. The present study focuses in particular on the oxygen emission line
properties in young supernova remnants, since different explosion scenarios
predict a different amount and distribution of this element. Analysis of the
soft X-ray spectra from supernova remnants in the Large Magellanic Cloud and
confrontation with remnant models for different explosion scenarios suggests
that SNR 0509-67.5 could originate from a delayed detonation explosion and SNR
0519-69.0 from an oxygen-rich merger.Comment: 8 pages, 4 figures, MNRAS accepte