215 research outputs found

    A new robust diagnostic polymerase chain reaction for determining the mating status of female Anopheles gambiae mosquitoes.

    Get PDF
    The principal malaria vector in Africa, Anopheles gambiae, contains two pairs of autosomes and one pair of sex chromosomes. The Y chromosome is only associated with males and other Y chromosome-specific DNA sequences, which are transferred to women during mating. A reliable tool to determine the mating status of dried wild An. gambiae females is currently lacking. DNA was extracted from dried virgin and mated females and used to test whether Y chromosome-specific polymerase chain reaction (PCR) markers can be successfully amplified and used as a predictor of mating. Here we report a new PCR-based method to determine the mating status among successfully inseminated and virgin wild An. gambiae females, using three male-specific primers. This dissection-free method has the potential to facilitate studies of both population demographics and gene flow from dried mosquito samples routinely collected in epidemiologic monitoring and aid existing and new malaria-vector control approaches

    Colonization of malaria vectors under semi-field conditions as a strategy for maintaining genetic and phenotypic similarity with wild populations

    Get PDF
    Background Malaria still accounts for an estimated 207 million cases and 627,000 deaths worldwide each year. One proposed approach to complement existing malaria control methods is the release of genetically-modified (GM) and/or sterile male mosquitoes. As opposed to laboratory colonization, this requires realistic semi field systems to produce males that can compete for females in nature. This study investigated whether the establishment of a colony of the vector Anopheles arabiensis under more natural semi-field conditions can maintain higher levels of genetic diversity than achieved by laboratory colonization using traditional methods.<p></p> Methods Wild females of the African malaria vector An. arabiensis were collected from a village in southern Tanzania and used to establish new colonies under different conditions at the Ifakara Health Institute. Levels of genetic diversity and inbreeding were monitored in colonies of An. arabiensis that were simultaneously established in small cage colonies in the SFS and in a large semi-field (SFS) cage and compared with that observed in the original founder population. Phenotypic traits that determine their fitness (body size and energetic reserves) were measured at 10th generation and compared to founder wild population.<p></p> Results In contrast to small cage colonies, the SFS population of An. arabiensis exhibited a higher degree of similarity to the founding field population through time in several ways: (i) the SFS colony maintained a significantly higher level of genetic variation than small cage colonies, (ii) the SFS colony had a lower degree of inbreeding than small cage colonies, and (iii) the mean and range of mosquito body size in the SFS colony was closer to that of the founding wild population than that of small cage colonies. Small cage colonies had significantly lower lipids and higher glycogen abundances than SFS and wild population.<p></p> Conclusions Colonization of An. arabiensis under semi-field conditions was associated with the retention of a higher degree of genetic diversity, reduced inbreeding and greater phenotypic similarity to the founding wild population than observed in small cage colonies. Thus, mosquitoes from such semi-field populations are expected to provide more realistic representation of mosquito ecology and physiology than those from small cage colonies.<p></p&gt

    Host-specific cues cause differential attractiveness of Kenyan men to the African malaria vector Anopheles gambiae

    Get PDF
    BACKGROUND: Many studies have suggested that variability in the attractiveness of humans to host-seeking mosquitoes is caused by differences in the make-up of body emanations, and olfactory signals in particular. Most investigations have either been laboratory-based, utilising odour obtained from sections of the body, or have been done in the field with sampling methods that do not discriminate between visual, physical and chemical cues of the host. Accordingly, evidence for differential attractiveness based on body emanations remains sparse in spite of the far-reaching epidemiological implications of this phenomenon. METHODS: A new three-port olfactometer that accommodates complete human beings as sources of host-seeking stimuli was used to study behavioural responses of Anopheles gambiae Giles sensu stricto (hereafter An. gambiae) under semi-field conditions in western Kenya. Differential attractiveness of nine male Kenyans was assessed by simultaneously exposing the mosquitoes to (a mixture of) total body emanations of 3 people occupying separate tents. Controls (empty tents) were included and the effect of residual odours following tent occupation was also examined. RESULTS: Trap catches increased significantly (P < 0.001) when a tent was occupied. Based on 'competition' experiments, the nine persons were classified into least, medium and most attractive groups. There was no significant interaction between person and trap (P = 0.302) or person and test period (P = 0.223). Presence (P < 0.001) or absence (P = 0.949) of significant differences in the number of mosquitoes caught per trap when tents were simultaneously occupied by one person in each or left empty, respectively, demonstrated that residual odours following tent occupation did not affect behavioural responses of the mosquitoes. CONCLUSION: We provide evidence that in the vicinity of humans, when exposed to a blend of physical and olfactory signals from more than one host, An. gambiae can effectively and consistently express host-selection behaviour that results in non-random biting

    Trapping of the malaria vector Anopheles gambiae with odour-baited MM-X traps in semi-field conditions in western Kenya

    Get PDF
    BACKGROUND: The successful development of odour-baited trapping systems for mosquitoes depends on the identification of behaviourally active semiochemicals, besides the design and operating principles of such devices. A large variety of 'attractants' has been identified in laboratory investigations, yet few of these increase trap catches in the field. A contained system, intermediate between the laboratory and open field, is presented and previous reports that human foot odour induces behavioural responses of Anopheles gambiae confirmed. METHODS: The response of 3–5 day old female An. gambiae towards odour-baited counterflow geometry traps (MM-X model; American Biophysics Corp., RI) was studied in semi-field (screen house) conditions in western Kenya. Traps were baited with human foot odour (collected on socks), carbon dioxide (CO(2), 500 ml min(-1)), ammonia (NH(3)), 1-octen-3-ol, or various combinations thereof. Trap catches were log (x+1) transformed and subjected to Latin square analysis of variance procedures. RESULTS: Apart from 1-octen-3-ol, all odour baits caused significant (P < 0.05) increases in trap catches over non-baited traps. Foot odour remained behaviourally active for at least 8 days after collection on nylon or cotton sock fabric. A synergistic response (P < 0.001) was observed towards the combination of foot odour and CO(2), which increased catches of these odours alone by 3.8 and 2.7 times, respectively. CONCLUSION: These results are the first to report behavioural responses of an African malaria vector to human foot odour outside the laboratory, and further investigation of fractions and/or individual chemical components of this odour complex are called for. Semi-field systems offer the prospect of high-throughput screening of candidate kairomones, which may expedite the development of efficient trap-bait systems for this and other African mosquito species

    Exercise and other non-pharmaceutical interventions for cancer-related fatigue in patients during or after cancer treatment: a systematic review incorporating an indirect-comparisons meta-analysis.

    Get PDF
    To assess the relative effects of different types of exercise and other non-pharmaceutical interventions on cancer-related fatigue (CRF) in patients during and after cancer treatment. Systematic review and indirect-comparisons meta-analysis. Articles were searched in PubMed, Cochrane CENTRAL and published meta-analyses. Randomised studies published up to January 2017 evaluating different types of exercise or other non-pharmaceutical interventions to reduce CRF in any cancer type during or after treatment. Risk of bias assessment with PEDro criteria and random effects Bayesian network meta-analysis. We included 245 studies. Comparing the treatments with usual care during cancer treatment, relaxation exercise was the highest ranked intervention with a standardisedmean difference (SMD) of -0.77 (95% Credible Interval (CrI) -1.22 to -0.31), while massage (-0.78; -1.55 to -0.01), cognitive-behavioural therapy combined with physical activity (combined CBT, -0.72; -1.34 to -0.09), combined aerobic and resistance training (-0.67; -1.01 to -0.34), resistance training (-0.53; -1.02 to -0.03), aerobic (-0.53; -0.80 to -0.26) and yoga (-0.51; -1.01 to 0.00) all had moderate-to-large SMDs. After cancer treatment, yoga showed the highest effect (-0.68; -0.93 to -0.43). Combined aerobic and resistance training (-0.50; -0.66 to -0.34), combined CBT (-0.45; -0.70 to -0.21), Tai-Chi (-0.45; -0.84 to -0.06), CBT (-0.42; -0.58 to -0.25), resistance training (-0.35; -0.62 to -0.08) and aerobic (-0.33; -0.51 to -0.16) showed all small-to-moderate SMDs. Patients can choose among different effective types of exercise and non-pharmaceutical interventions to reduce CRF

    Clarification of anomalies in the application of a 2La molecular karyotyping method for the malaria vector Anopheles gambiae

    Get PDF
    BACKGROUND:Chromosomal inversions have been considered to be potentially important barriers to gene flow in many groups of animals through their effect on recombination suppression in heterokaryotypic individuals. Inversions can also enhance local adaptation in different groups of organisms and may often represent species-specific differences among closely related taxa. We conducted a study to characterize the 2La inversion karyotypes of An. gambiae sensu stricto mosquitoes sampled from the Kilombero Valley (Tanzania) using a newly designed PCR assay.RESULTS:We frequently encountered a (687 bp) fragment which was only present in the Kilombero Valley populations. Laboratory crossing between An. gambiae s.s. from Njage (Tanzania) and Kisumu (Western Kenya) populations resulted in F1 offspring carrying the observed fragment. Karyotype analysis did not indicate differences in 2La region chromosome morphology between individuals carrying the PCR fragments, the 207 bp fragment, or the 687 bp fragement.CONCLUSION:The observed insertion/deletion polymorphism within the region amplified by the 2La PCR diagnostic test may confound the interpretation of this assay and should be well considered in order to maintain an acceptable level of reliability in studies using this assay to describe the distribution and frequency of the 2La inversion among natural populations of An. gambiae s.

    MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae) ecosystem in western Kenya

    Get PDF
    BACKGROUND: The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. METHODS: We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs), we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. RESULTS: Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking) occurred successfully. CONCLUSION: The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritised. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases
    corecore