1,949 research outputs found

    Amplitude noise reduction in semiconductor lasers with weak, dispersive optical feedback

    Get PDF
    We present the theory and measurements of the amplitude noise spectrum from a semiconductor laser with weak optical feedback (Pfb/Pout ~10^-6) from an external cavity containing an element of dispersive loss. The laser noise is found to be reduced over most of the low-frequency spectrum, although an increase in the noise is observed at frequencies corresponding to multiples of the external-cavity free spectral range. The low-frequency noise reduction closely follows theoretical predictions, and a reduction of as much as 7 dB is measured at an injection current of 1.5 times the threshold current. The potential of this method for contributing to the production of amplitude-squeezed light is discussed

    Failure of vaccination to prevent outbreaks of foot-and-mouth disease

    Get PDF
    Outbreaks of foot-and-mouth disease persist in dairy cattle herds in Saudi Arabia despite revaccination at intervals of 4-6 months. Vaccine trials provide data on antibody responses following vaccination. Using this information we developed a mathematical model of the decay of protective antibodies with which we estimated the fraction of susceptible animals at a given time after vaccination. The model describes the data well, suggesting over 95% take with an antibody half-life of 43 days. Farm records provided data on the time course of five outbreaks. We applied a 'SLIR' epidemiological model to these data, fitting a single parameter representing disease transmission rate. The analysis provides estimates of the basic reproduction number R(0), which may exceed 70 in some cases. We conclude that the critical intervaccination interval which would provide herd immunity against FMDV is unrealistically short, especially for heterologous challenge. We suggest that it may not be possible to prevent foot-and-mouth disease outbreaks on these farms using currently available vaccines

    Theory of dark resonances for alkali vapors in a buffer-gas cell

    Get PDF
    We develop an analytical theory of dark resonances that accounts for the full atomic-level structure, as well as all field-induced effects such as coherence preparation, optical pumping, ac Stark shifts, and power broadening. The analysis uses a model based on relaxation constants that assumes the total collisional depolarization of the excited state. A good qualitative agreement with experiments for Cs in Ne is obtained.Comment: 16 pages; 7 figures; revtex4. Accepted for publication in PR

    Determining the Neutrino Mass Hierarchy with Cosmology

    Full text link
    The combination of current large scale structure and cosmic microwave background (CMB) anisotropies data can place strong constraints on the sum of the neutrino masses. Here we show that future cosmic shear experiments, in combination with CMB constraints, can provide the statistical accuracy required to answer questions about differences in the mass of individual neutrino species. Allowing for the possibility that masses are non-degenerate we combine Fisher matrix forecasts for a weak lensing survey like Euclid with those for the forthcoming Planck experiment. Under the assumption that neutrino mass splitting is described by a normal hierarchy we find that the combination Planck and Euclid will possibly reach enough sensitivity to put a constraint on the mass of a single species. Using a Bayesian evidence calculation we find that such future experiments could provide strong evidence for either a normal or an inverted neutrino hierachy. Finally we show that if a particular neutrino hierachy is assumed then this could bias cosmological parameter constraints, for example the dark energy equation of state parameter, by > 1\sigma, and the sum of masses by 2.3\sigma.Comment: 9 pages, 6 figures, 3 table

    Sparse Bayesian mass-mapping with uncertainties: hypothesis testing of structure

    Get PDF
    A crucial aspect of mass-mapping, via weak lensing, is quantification of the uncertainty introduced during the reconstruction process. Properly accounting for these errors has been largely ignored to date. We present results from a new method that reconstructs maximum a posteriori (MAP) convergence maps by formulating an unconstrained Bayesian inference problem with Laplace-type â„“1\ell_1-norm sparsity-promoting priors, which we solve via convex optimization. Approaching mass-mapping in this manner allows us to exploit recent developments in probability concentration theory to infer theoretically conservative uncertainties for our MAP reconstructions, without relying on assumptions of Gaussianity. For the first time these methods allow us to perform hypothesis testing of structure, from which it is possible to distinguish between physical objects and artifacts of the reconstruction. Here we present this new formalism, demonstrate the method on illustrative examples, before applying the developed formalism to two observational datasets of the Abel-520 cluster. In our Bayesian framework it is found that neither Abel-520 dataset can conclusively determine the physicality of individual local massive substructure at significant confidence. However, in both cases the recovered MAP estimators are consistent with both sets of data

    Discrepancies between CFHTLenS cosmic shear and Planck: new physics or systematic effects?

    Get PDF
    There is currently a discrepancy in the measured value of the amplitude of matter clustering, parameterised using σ8\sigma_8, inferred from galaxy weak lensing, and cosmic microwave background data, which could be an indication of new physics, such as massive neutrinos or a modification to the gravity law, or baryon feedback. In this paper we make the assumption that the cosmological parameters are well determined by Planck, and use weak lensing data to investigate the implications for baryon feedback and massive neutrinos, as well as possible contributions from intrinsic alignments and biases in photometric redshifts. We apply a non-parametric approach to model the baryonic feedback on the dark matter clustering, which is flexible enough to reproduce the OWLS and Illustris simulation results. The statistic we use, 3D cosmic shear, is a method that extracts cosmological information from weak lensing data using a spherical-Bessel function power spectrum approach. We analyse the CFHTLenS weak lensing data and, assuming best fit cosmological parameters from the Planck CMB experiment, find that there is no evidence for baryonic feedback on the dark matter power spectrum, but there is evidence for a bias in the photometric redshifts in the CFHTLenS data, consistent with a completely independent analysis by Choi et al. (2015), based on spectroscopic redshifts; and that these conclusions are robust to assumptions about the intrinsic alignment systematic. We also find an upper limit on the sum of neutrino masses conditional on other Λ\LambdaCDM parameters being fixed, of <0.28< 0.28 eV (1σ1\sigma).Comment: 13 pages, 6 figures, accepted to MNRA

    Scaling in directed dynamical small-world networks with random responses

    Full text link
    A dynamical model of small-world network, with directed links which describe various correlations in social and natural phenomena, is presented. Random responses of every site to the imput message are introduced to simulate real systems. The interplay of these ingredients results in collective dynamical evolution of a spin-like variable S(t) of the whole network. In the present model, global average spreading length \langel L >_s and average spreading time _s are found to scale as p^-\alpha ln N with different exponents. Meanwhile, S behaves in a duple scaling form for N>>N^*: S ~ f(p^-\beta q^\gamma t'_sc), where p and q are rewiring and external parameters, \alpha, \beta, \gamma and f(t'_sc) are scaling exponents and universal functions, respectively. Possible applications of the model are discussed.Comment: 4 pages, 6 Figure

    Size magnification as a complement to Cosmic Shear

    Get PDF
    We investigate the extent to which cosmic size magnification may be used to com- plement cosmic shear in weak gravitational lensing surveys, with a view to obtaining high-precision estimates of cosmological parameters. Using simulated galaxy images, we find that size estimation can be an excellent complement, finding that unbiased estimation of the convergence field is possible with galaxies with angular sizes larger than the point-spread function (PSF) and signal-to-noise ratio in excess of 10. The statistical power is similar to, but not quite as good as, cosmic shear, and it is subject to different systematic effects. Application to ground-based data will be challeng- ing, with relatively large empirical corrections required to account for with biases for galaxies which are smaller than the PSF, but for space-based data with 0.1 arcsecond resolution, the size distribution of galaxies brighter than i=24 is ideal for accurate estimation of cosmic size magnification.Comment: 11 pages, 11 figures, accepted by MNRA
    • …
    corecore