4,218 research outputs found
A user's manual for the Automatic Synthesis Program /program C/
Digital computer program for numerical solution of problems in system theory involving linear mathematic
Liability of Municipal Corporations under the State\u27s Statutory Waiver of Tort Immunity - Schuster v. City of New York
Single shot parameter estimation via continuous quantum measurement
We present filtering equations for single shot parameter estimation using
continuous quantum measurement. By embedding parameter estimation in the
standard quantum filtering formalism, we derive the optimal Bayesian filter for
cases when the parameter takes on a finite range of values. Leveraging recent
convergence results [van Handel, arXiv:0709.2216 (2008)], we give a condition
which determines the asymptotic convergence of the estimator. For cases when
the parameter is continuous valued, we develop quantum particle filters as a
practical computational method for quantum parameter estimation.Comment: 9 pages, 5 image
Magnetometry via a double-pass continuous quantum measurement of atomic spin
We argue that it is possible in principle to reduce the uncertainty of an
atomic magnetometer by double-passing a far-detuned laser field through the
atomic sample as it undergoes Larmor precession. Numerical simulations of the
quantum Fisher information suggest that, despite the lack of explicit
multi-body coupling terms in the system's magnetic Hamiltonian, the parameter
estimation uncertainty in such a physical setup scales better than the
conventional Heisenberg uncertainty limit over a specified but arbitrary range
of particle number N. Using the methods of quantum stochastic calculus and
filtering theory, we demonstrate numerically an explicit parameter estimator
(called a quantum particle filter) whose observed scaling follows that of our
calculated quantum Fisher information. Moreover, the quantum particle filter
quantitatively surpasses the uncertainty limit calculated from the quantum
Cramer-Rao inequality based on a magnetic coupling Hamiltonian with only
single-body operators. We also show that a quantum Kalman filter is
insufficient to obtain super-Heisenberg scaling, and present evidence that such
scaling necessitates going beyond the manifold of Gaussian atomic states.Comment: 17 pages, updated to match print versio
Properties of nonaqueous electrolytes Quarterly report, 20 Jun. - 19 Sep. 1967
Electrolyte preparation, and physical property and nuclear magnetic resonance structural studies of nonaqueous electrolyte
The QCD equation of state at finite density from analytical continuation
We determine the equation of state of QCD at finite chemical potential, to
order , for a system of 2+1 quark flavors. The simulations are
performed at the physical mass for the light and strange quarks on several
lattice spacings; the results are continuum extrapolated using lattices of up
to temporal resolution. The QCD pressure and interaction measure are
calculated along the isentropic trajectories in the plane
corresponding to the RHIC Beam Energy Scan collision energies. Their behavior
is determined through analytic continuation from imaginary chemical potentials
of the baryonic density. We also determine the Taylor expansion coefficients
around from the simulations at imaginary chemical potentials.
Strangeness neutrality and charge conservation are imposed, to match the
experimental conditions.Comment: 5 pages, 4 figure
Collective excitations in electron-hole bilayers
We report a combined analytic and Molecular Dynamics analysis of the
collective mode spectrum of an electron-hole (bipolar) bilayer in the strong
coupling quasi-classical limit. A robust, isotropic energy gap is identified in
the out-of-phase spectra, generated by the combined effect of correlations and
of the excitation of the bound dipoles; the in-phase spectra exhibit a
correlation governed acoustic dispersion for the longitudinal and transverse
modes. Strong nonlinear generation of higher harmonics of the fundamental
dipole oscillation frequency and the transfer of harmonics between different
modes is observed. The mode dispersions in the liquid state are compared with
the phonon spectrum in the crystalline solid phase, reinforcing a coherent
physical picture.Comment: 4 pages, 5 figure
Quantum measurement of a mesoscopic spin ensemble
We describe a method for precise estimation of the polarization of a
mesoscopic spin ensemble by using its coupling to a single two-level system.
Our approach requires a minimal number of measurements on the two-level system
for a given measurement precision. We consider the application of this method
to the case of nuclear spin ensemble defined by a single electron-charged
quantum dot: we show that decreasing the electron spin dephasing due to nuclei
and increasing the fidelity of nuclear-spin-based quantum memory could be
within the reach of present day experiments.Comment: 8 pages, 2 figures; minor changes, published versio
A CubeSat for Calibrating Ground-Based and Sub-Orbital Millimeter-Wave Polarimeters (CalSat)
We describe a low-cost, open-access, CubeSat-based calibration instrument
that is designed to support ground-based and sub-orbital experiments searching
for various polarization signals in the cosmic microwave background (CMB). All
modern CMB polarization experiments require a robust calibration program that
will allow the effects of instrument-induced signals to be mitigated during
data analysis. A bright, compact, and linearly polarized astrophysical source
with polarization properties known to adequate precision does not exist.
Therefore, we designed a space-based millimeter-wave calibration instrument,
called CalSat, to serve as an open-access calibrator, and this paper describes
the results of our design study. The calibration source on board CalSat is
composed of five "tones" with one each at 47.1, 80.0, 140, 249 and 309 GHz. The
five tones we chose are well matched to (i) the observation windows in the
atmospheric transmittance spectra, (ii) the spectral bands commonly used in
polarimeters by the CMB community, and (iii) The Amateur Satellite Service
bands in the Table of Frequency Allocations used by the Federal Communications
Commission. CalSat would be placed in a polar orbit allowing visibility from
observatories in the Northern Hemisphere, such as Mauna Kea in Hawaii and
Summit Station in Greenland, and the Southern Hemisphere, such as the Atacama
Desert in Chile and the South Pole. CalSat also would be observable by
balloon-borne instruments launched from a range of locations around the world.
This global visibility makes CalSat the only source that can be observed by all
terrestrial and sub-orbital observatories, thereby providing a universal
standard that permits comparison between experiments using appreciably
different measurement approaches
- …
