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i. Dynamical E_uations of an N-Port.

Consiier an N × N matrix function Z(-) of the complex vari-

able s. Assume that it is the impedance matrix of a finite, time-invarlaut,

passive _ (resistor3 inductor, capacitor_ ideal transformer, gyrator)

N-port. Then3 as is well knownt Z(-) has the following properties

(1) Every element of Z(.) is a ratio of two relatively

prime polynomials with real coefficients.

(ii) For every s with Re s • 01 the heraetlan matrix

(1.1) Z(s) + Z'(_) (' = transpose, = complex conJu@_te)

is nonne_tive definite.

If gyrators are not allowed, i.e., if the N-port is reciprocal,

then we must have also

(lii) Z(') is symmetrical, i.e., zij(.)-zji(.).

We shall also assume :

(iv) Z(m) = O, i.e., the degree of every numerator pol_alcmial

in Z(') is less than the degree of the corresponding denonin_tor.

Requirement (i_) is not really restrictive but it will simplify

considerably the formulas which are to follow.

This research was s_pported in part by the US Air Force under cortracts
AF 33(697)-8599 (Aeronautical S_mte_._Division) and AF 49 (638)-12(_ (Office

of Scientific Research))._[ bx the _ational Aeronautical and Slm_ceAdminis-
tration under Contract NASw-718.
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The matrix function Z(-) represents the input-output relations

of the N-port. 1% is natural to examine the r_lation between this

"external" description of the N-port and the "interr_l" description in

terms of dynamical or state _riables. That is, how does one associate a

state with the N-port described in terms of its impedance matrix?

This question of representation has been settled recently by the

writer (see pa_tlcui_rly [i]). It turns out that evezy "transfer function"

matrix Z(') which has properties (i) and (iv)3 but not necessarily (ii)

and (iii), one may associate a system of vector differential equations of i
the form

(1.2) /dt =Fx+

(1.3) y(t) = Hx(t). i

Here x, the sta_, is an n-vector; u(.), the _ (current) is an

N-vector, and y(.), the outp_ (voltage), is also an N-vector. F, G_ H

are constant linear transformations. We call (1.2 -3) a finite dimensiona_

constant linear d_namical system [1].

If equations (1.2-3) are known, the matrix Z(s) can be writ+en down

by inspection by taking the formal laplace transform of (1.2). The result is

expressed by the formula

(1.4) Z(s) : H(sI - F)'IG (I : unit matrix).

Given Z(-), the determination of F, G, and H in (1.2-3) is much

less trivial. Some set (F, G, H) satisfying (1.4) always exists. Moreover,

there is a smallest integer n such that relations (1.2-4) hold simultaneously.O

Generally speaking, this smallest dimension no is a complicated function of

the matrix Z(.). If n in (1.2-3) is larger than no, then the dynamical

system (1.2-3) is said to be red_ueible. The n_ber no is identical with the

L
J
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so-calleddegree of Z(. ) as defined by McMillan [2-4]. A numerical method

for machine computing no was given in [I]. Alternately, Mc_llan's defini-

tion yield n via the so-called Smith canonical form of polynomial matrices_" o

[5].

From the mathematical point of view, equations (1.2-3) may be viewed

as _presentlng an abstract dynamical system defined with respect to an

abstract vector space X. To g_ve these equations concrete meaning, we must

choose a specific coordinate system or basis in X and express the.abstract

vector x and the abstract linear transformations F, G, and H in numeri-

cal form. Once this has been done, x becomes an n-tuple of real numbers

and F, G, H become n × n, n × N, and N × n arrays (matrices) of real

numbers.

Any system (1.2-3) given in numerical form, as Just described, is

called a realization of Z(.) (see Ill). M_thematically, the term

"realization" means that we pass from the abstract to the concrete (numerical)

description. Physically, the term "realization" is motivated by the fact

[_] that any numerically given system of equation_ (1.2-3) may be interpreted

as the program for an analog computer which simulates the given N-port.

Each realization corresponds to a specific choice of a coordinate

system for the state vector. Our ultimate objective is to obtain that sub-

class of realizations which can be identified with a passive network, not

merely with an analog computer program.

The next problem concerns the study of the relationships between

various realizations of Z(.). Thls is indeed the main idea motivating the

research discussed here. The problem is clearly of a group theoretical nature.

We ask: What is the group of transformations which leave the properties of a

given realization invarlant?

Suppose we pick two bases for representing the abstract vector x.

In the first, the vector is x described by the ntm_rlcal n-tuple

= (_l' "'" _n ) and in the second it is represented by the n-tupleA

= dl , ..., _n). It Is well known [7, P. 82] that _l_ are related by a

nonsingular linear transformation, so that

1964016562-006
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(1.9) _ =T_ or _i= Zt _, i= i,...,n
i=l iJ j

where T = [tij] is a constant 3 real_ nonsingular matrix. The matrices T _

form the general linear group. ^ iIt is convenient to abuse notation and employ the symbols x, x; F_
^ _

F_ ... also for the n-tuples representing the vector x and matrices repre- i

senting the linear transformation F with respect to certain specified bases, i

Now if the se_ IF, G, H] specifies the dyrm_ical s_tem in the fiz_t basis, i!?

then the set [8, _ _] which specifies the same s.vstemwith respect to the i

second basis is related to the first set by the relations i
L

_ = _._-l :

^

(1.6) a = _

_= HT-1

w_chareeasilyaeri_a_i_ (z.2-3)and(1.9).(_e [I].).Different

choices of bases correspond to different realizations of the same Z(.).

Therefore one would cel_uainlyexpect that Z(. ) is invariarrtwith respect to

a change in basis. This is verified with the aid of (1.6):

Z(S) = H(sI - F)G = HT'IT(sI - F)-_'ITG

_(sx _-i)-_, ^ ^= - o =_(sl-F)'_G.

Conversely, one may ask: _a what way do sak7two realizations of

Z(.) differ from one another? The answer is [1] that if they are irreducible

(n = no), then they differ only by a choice of basis. The criterion for

irreducibility is that the triple [F. G_ H] be completely controllable and

1964016562-007
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completely observable [i]. Thus if two completely controllable and com-

pletely obsex_ble triples [F3 G, H) and [9, MGj _) yield the same trans-

fer function matrix Z('), then they are necessarily connected by the re-

lations (1.6). Note that this is an abstract result; in practical cases is

may be quite difficult to find the transformation T.

We now rephrase this important fact in such a way as to emphasize

its group theoretic_l character:

THEGREM. An_ two irreducible realizations (1.2-3) of a transfer

function m_trix Z(.) having properties (i) and (iv) are equivalent under

the general linear grou_.

Now if Z(') is the impedance matrix of a passive N-port, it will

have certain other properties (namely (ii-ili) above) in addition to those

needed to establish this theorem. One wou/d there.foreexpect to find more

restricted types of realizations which are invariant with respect to certain

subgroups of the general linear group. The determination of _hese "network

subgroups" is identical _th the problem of studying all pos&.ble network_J

realizations of a given Z(" ), which is also called the problem of network

equivalence. An important advantage of the group theoretic approach we wish

to explore he1_ is that it provides a unified way of studying the problem of

synthesis by different classes of elements. For instance, the RIL'2and

R_ synthesis problems can be studied simultaneously. (See [5].)

It is important to bear in mind the conceptual distinction between

the "impedance" transfer function and the "state variable" po_n_s of _iew

in network theory.

Transfez and impedance functions are coordinate-free notions. They

are most useful in studying properties of networks regardless of their in-

ternal st_xcture. This is the deeper reason why existence criteria (such as

positive realness) are stated more conveniently in terms of Z(.) then in

terms of the triple (F, G, H). This observation is not confined to network

theory[9- 10].

1964016562-008
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On the other hand, dynamical equations (1.2-3) always Invclve coor-

dinates. These equations are most useful in the detaile,i study of the

internal structure of a network. Such considerations _ve been generally

absent from classical network theory, which may ex_,12in in _art the diffi-

cultles encountered in resolving n_twork equivalenc_ problems.

The group-theoz_tical approach suggested here is completely analo-

gous to the famous Erlanger Programm of Felix F1ein. There have never been

any systematic effort to apply Klein's ideas co net,_orktheory, as far as

the writer is aware. It should be _inted out, however, that the work on

network equivalence of Cauer [93 see partlcularly pages xviil, 49, and

Chapter 10] was certainly a conscious step in t_ same direction. Much more

can be done along these lines.

2. Restrictions Due the PassJ _ity and R_.

The fact that Z(') represents a ;assive N-port imposes certain re-

strictions on the matrices F, G, and H. These restrictions are the counter-

part of properties (ii-ili) of t-heimpedance matrix.

First of all it is necessary to identify the components xi of the

state n-tuple x with physical variables in the network. We adopt the follow-

ing convention, which is both standard and convenient [12].

Let as consider an N-port which contai-_ nL inductors and

nC = n - nL capacitors. Then we define

xi = current through i-th inductor, when i = l, ..., nL_

(2.1)

xj = voltage across i-th capacitor, when J = nL + l, ..., u.

Assuming for a moment that none of the indactors ar_ ooupled with

each other, and the same for the capacitors, it follows from llr_arity that

the dynamical equations of the retwork may be written in the form

1964016562-009
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,_ n N

I Lidxl/dt = 7alkx k + Z bi_Jl(t ) i = l, ..., nL

k=l L=I

(2.2) n N

, Cjdx#dt4 = Z a _x, + Z b J (t) J = _r4+l, ..., nk=l dmm l=l Jl I

D

Ul(t) = Z h_kXk(t) , I = i, ..., N.k=l

The Jl(t) are the currents entering the ports and the Ul(t ) are th_ volt-
ages across the ports.

To deriv_ the numbers aik and bi! we may replace, for an instant3

an inductor by a current source and a capacitor by a voltage source. We then

obtain the following interpretation.

Let il, i2 be integers belonging to [i, nL], Jl' J2 integer_ be-

longing to [nL, n], and l an integer belonging to [i, N].

aili2 = voltage across ll-th indtmtor _en all capacitors
are short circuited, all !_,ts and all inductors

save the i2-th are open circuited, and the 12-Lh

inductor is replaced by a unit current source.

ailJ2 = voltage across the il-th inductor when all ports

and all inductors are open circuited, all capacitors

save the J2-th are short circuited, and the J2-th

capacitor is repl_.-edby a unit voltage source.

bil! = voltage across the il-th inductor when aA1 capacitors
are short circuited, all inductors are open circuited,

all ports save the l-th are open circuited, _nd a unit

current source is connected across with l-th port.

The other quantities are defined analogously.

1964016562-010



It Is clear that the matrices A and B depend only on that

part of the network which contains the resistors and ideal transformers.

Partlonlng these matrices according to the numbering scheme intro_:_ed

above, we can easily see what restrictions are imposed by passivity and/or

reciprocity. Tf we write

- ! -

A I 62i !
(2.3) A = - - -I- - -

!
!

C1 , A2
IB m

then A1 has the dimension of resistance, A 2 has the dimension of con-

ductance, while C1 and C2 are dimensionless.

Passivity implies that A 1 and A2 are nonpositlve (but not

necessarily s._mmetric)u_trlces i.e., their quadratic forms are nonposltlve.

M_reover; the quadratic fo._m

0 C1
X ! X

Ce 0

must be identically 0, i.e., C2 - - C_.

Reciprocity implies that A1 aml _2 are symmetric (but not

necessarily nonpositive).

As far as B and H are concerned_

If]B= , H= .

B2

If _ _ 0 then Z(_) _ 0 and assumption (iv) of the previous section Is

violated. H1 --0 for the same reason. Passivity requires that _R 2 be

nonnegat_ve definite. Reciprocity requires B2 = _.

1964016562-011
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_tfter removing all Inductors and cap_citoz_ the N-port becomes an

(N + n)-port. This (N + n)-port does not necessa1_ly possess either an

impedance or admittance matrix beca_me there may be open circuits or short

circuits at certain ports. In such cases, one adopts a suitable mixed

impedance-admittance description of the last n ports. We do not wish to

dwell upon the complications _ all trivial -- which result in such cases.

Suppose we write the energy stored in the N-port as

% n
1 1 2 1 2

E=_x,_=_ z Lixi +_ z cjxj.
i--I j--%+i

Then eq_t_ons (9.2) take the simple form

, !

(2.2) Pdx/dt = Ax + BJ(t), U(t) = Hx(t).

These equations are valid even if there is coupling between the ind__.torsand

capacitors. Thus in general P will P_v_ the form

Iii:I(2.5) P= - ' - .

! C_I!

The off-dlagonal terms of P are 0 because in conventional networks there

is no coupling between electric and magnetic fi_ldso Since the stored energy

must h_ a positive definite quadratic form, we assume that L and C are

positive definite matrices. Reciprocity requires that they be symmetrlcal

matrices. In the conventional RLCT cases L is symmetric, positive definite,

while C is a matrix with positive entries on the diagonal and zeros elsewhere.

1964016562-012
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The case when L is merely nonnegative definite indicates the pre-

sence of ideal transformers. Lu this case the n-amher of state v_riables

is too large. We shall not discuss the resultiug complications.

If the dynamical equations (2.2') of the N-port are reducible, i.e.,

may be replaced by a smaller set of equations having the same impedance

matrix Z, then the network contairm dynamical modes which are not speci-

fied by the impedance matrix Z but arise solely as a resu/t of the syn-

thesis procedure. For instance, the Darlington and _he Boht-Duffin proce-

drupesintroduce such extraneous modes° Although the presence of such addi-

tional modes may be necessary to carry out certain types of synthesis

procedures, in this _aper we shall be concerned only with the irreducible

case. In other words, it will always be assumed that the N-port always

contains a minimal number n of reactive elements.o

3. Characterization of Passivity.

Now we shall state a relation between the imlY._danceZ and the state

variable description of an N-port. This relation was discovered in the

course of studying the so-called Lur'e problem of construction Ly_punov

f',_nctionsfor dynamical systems which are linear save for a single nonlinear

element _].

The result to "Destated below is more general than the M_in lemma in

[9], in that we admit N X N rather than 1 X 1 impedance matrices and we

drop the assumption that all eigenvalues of F have negative real parts.

On the other hand, we will assume here, as a matter of convenience,that

Z(®) = 0. This is an unessential restriction which was not needed in the

M_in lemma of [9]. For a full ti_atment of the general problem, inclining

proofs, see [13, 14].

CHARACTERIZATION C_ PASSIVITY THEOREM. let Z(-) be a_.___nN X N matrix

of ratio_l functions of the complex variable s, with Z(_) = 0. let

[F, G, HI be _ triple such that (1.2-3) is an irreducible realization of

Z(.). Let _(y) he a continuous p-vector fullction of the p-vector y s__h

that _(0)= 0 and y'_(y)-_ 0 for all y.

1964016562-013
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Then the following statements are equivalent:

(I) Z(') is nonneg_tive real, i.e., Re s 2_0 implies

Z(s) + Z'(s) = nonnegative definite hermetian matrix.

(II) There exists a s_etric, positive definite matrix P and a

symmetric, nonnegative definite matrix Q such that

(3.1) FF + F'P = - 2Q,

(3.2) _ = _.

(A matrix F satisfying (3.1-2) cannot have an eigenval_ with positive

real part; in its Jordan form all imaginary eigenvai_s are contained in

1 x 1 blocks; th_ null space of the matrix Q is necessarily contained i_

the eigen_ce of F sparmed by the eigenvectors corres.9onding to imaginary

eigenvalue s.)

(III) V = x'Px is a Lyapunov functio_nfor the autonomous dyrmmical

system dx/dt = Fx - GY(Hx) such that V(x) -_0.

Let us give an indication of the proof. (II) implies (I) by direct

substitution. Given (1), the nonnegative real character of Z(_) allows

it to be factored as Z(_) + Z'(-i_) = W'(_)W(_). Every such factoriza-

tion gives rise to a Q. The irreducibility of the realization is then

utilized to verify that (5.1-2) hold. (II) implies (III) because

,_(x)= m,F_,_- _,a'P_(m_)

-- - 2[_Qx + y"_(y) ] _-0

by (3.1-2). Finally, (llI) implies (I) by direct computation.

1964016562-014
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Remarks. (i) In a 1998 paper, Desoer [15] pointed out that at

that time the stability of passive nonreciprocal networks has not yet been

proved and gave an argument showing tha_ all such networks are, in fact,

(Lyapunov) stable. This result is now confirmed in the strongest possible

%By. Since the nonnegative realness of Z(') (as stated above, i.e., not

requiring Z(') = Z' (.)) is a necessary,condition for realizing a passive

RLCTF N-port, it is clear from the parenthetical remark in (II) that F

carmot have eigenvalues with positive real parts, nor can it have solutions

of the type tkcos (_t + (_), k > 0.

(2) For networks3 V = x'Px can always be identified with the

stored energy in the induct.orsand capacitors. Hence (Ill) shows that in

unterminated passive networks (Y = 0) the energy is a nonincreasing func-

tion of time. For arbitrary passive resistive terminations, which may be

either linear or nonlinear, the same conclusion holds. In the nonlinear case

this result represents a considerable improvement over what was known before.

(To my knowledge, the previous best general res1_lthere is that of Duffin

The characterization theorem expresses facts which are %mually taken

for granted frun an intuitive physical point of view. As a result, the

average engineer may be tempted to Jump to the conclusion that nothing new has

been done. But to do this would be a gross misunderstanding of the processes

of scientific research. The theorem i_ a more precise and more n_

characterlzamlon of passivity than was heret,_foreavailable_ The

and the Kenerality of this result in turn leads to deep insight into problems

of network synthesis [8, 14], which can now _ st,tied with a simplicity and

explicitness that was impossible pre_iously.

This theorem is a very convlnc_ additional piece of e_Idence that

passivity and network synthesis are intimately related. In [8] I shall pre-

sent some preliminary results which show that the structural properties of

the class of all networks which realize a given impedance function Z(.)

are in l-1 correspondence with certain algebraic Invariants of Z(. ).

1964016562-015
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4. Applications.

We shall il/u_tz&te the usefulness of the characterization theorem

and the group theoretic ideas related to it by two classical exaapl_ss

(i) LC 1-port synthesis accordlng to Foster, and (ii) synthesis of lossless

2-ports.

EXAMPLE i. We wish to prove that

A _cessar_ and sufficient condition in o_er that the scalar Impe-

dance function z(o) be realizable as t_ ].-portshown in Fi_. 1 is that

(i) z(.) is noqne_tlve real and

(i±) an polesor z(.) a_ _lr_ry.

Necessity" If the stat_ variables for the network are assigned as

shown in Fig. i, it follows by inspection that the A, B, H, and P

matrices are

" ! I ! "

01 , !
I

" "t " " "" " |-- " !
I i I

,0 i{ ,
|

11 0,. '
!

(4.1) A : ' ," II ! . t There are r 2 X 2
I • !

, blocks on the diagonal
_ .| _.. I .

I I In lt i I _J

o I i
I

, _ 0
I I I

r.a-
0

1

i

0 ,

11

1964016562-016
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(43) [i ' ' ' i]• H= _ 0 l' • • • ' 0
| ! l

C i I j "
' I Ii i
i_ o, I
' I 1
I0 Clt I

(4.4) p= _
t I

I
! I .
' I
t I •

" _ .... I- - -f
I

t I L 0
I I I r I

I I I rJI , I 0 C
L I f I

It is clear that the quintuple

F=p-1A h, G = P- , H = H, P = P, Q = 0

satisfies (3.1-2). Hence the impedance function of the 1-port, wkich is

given by

(4.9) z(s) = Co_ + k=lZ --Ck(B2- +_k2)' = Ck

is a nonnegatlve real function.

1964016562-017



Sufficiency: Suppose that z(-) is nonne_tlve real. Then re-

lations (3.1-2) are satisfied. If, in addition, all poles of z(') are ima-

glnary_ then Q in (3.1) is necessarily zero.

We shall now carry out a series of changes of basls which will

eventually exhibit the matrices A = FF, B = PG, H = H, and P = P in the

form (4.1-4), after which the existence of the network shown in Fig. 1 is

obvious by inspectSon.

Ste_2_. We pick a basis that P(1) = I. Then by (3.1) F(I ) = - Fil ).
This is always possible because under a change of Basis (1.9) we have

A

(1.6') P = T'PT

Since P is positive definite, it can always he w_-Ittenas P = T'IT, T

nonslngular, so that _ = P(1) = I.

S_____. We pick a second basis which leaves P invariant

(Pt2_ti = I) but transforms F(I ) into the canonical form

" _ I I -
01 I I

..L.._ -;._I

I II

_ 0 I I
I I" I "

._.... u.'L ....
_ I 0 a_

I i ! r

I I i /
I ' I-(Dr J, 0

_ I , I

1964016562-018
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This is always possible because [17] every skew symmetric matrix can be

transformed into the canonical form (4.6) by means of an orthogonal

transformation. Note that the element 0 in the upper left-hand corner

of F(2 ) corresponds to the elgenv_l_ 0 (if F(I ) _ppens to have that
eigenvalue), _ile the 2 X 2 blocks along the diagonal correspond to the

eige.nvalues +-_k' k = I, ..., r. (Since z(') has only imagi_zry poles,

F has only imaginary eigen_alues9 by nonnegative realness all eigenvalues

must be simple. Thus F(2 ) is as it should be.)

In the basis (2)3 the column vectors B, H' have the form

_o
m I m

%

°(2)=B(2)= _(2)= .... •

G_r

_r

Since the triple [F, G3 H'} must be irreducible and therefore completely

controllable and completely observable if (If) of the characterization theorem

is to hold, it is easily verified that _o >0 and _ + _ > 0,

k = ij ..._ r.

Step 3. Any proper (det = l) orthogonal transformation (rotation)

applied to the 2 X 2 matrix

0

1964016562-019
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1eaves it i;_vari_nt. We apply r such rotations corresponding to the

r blocks in F, in s_ch a _y that the vectors

in B and H' are.rotated into the vectors

I j k = 11 "--3 r.

0

L rk

By the comment made at the end of the preceding paragraph we know that

Tk--_ +_ _o. _'_"_F(3)--F(a)'P(3)-P(2)-I _n_

Wn

_o
t _ J m

0

Y1
o(3): B(3)-

0

l"r

Ste_4. Now _ obtain change to a basis where A, B and H have

only 0, i, -i as elements. Fortunately this can be accomplished with the

aid of a diagonal matrix. If x(3 ) = Ax(4), where A is diagonal, then

P(4) = AP(3)A-- A2,

1964016562-020
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B(4)=P(4)°(4)--_(3)_-1G(3)--_(3)

and

A(4 ) = P($)F(4 ) = AP(3)AA IF(3)A = AA(3)A.

We choose

m

i/_°', ',
! t

!Y_/_I_ 0!

I0 i/r i

" " -I I

I
A= t l "

I t • I
I

i I_ !YJ_)r 0
i ' I
t _ I0 i/y
! t ,

It iS easily checked that A(4), B(4], H[4 ] assume the form (4.1 - 4.])._ J

If we let

= 1/Bo,Co

Ck = 1/_k, k = l, ,.._ rj

{ = yk/_k, k = l, ..., r]

then the same can be said also about P(4)"

The proof is completed.

1964016562-021
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It may appear to the reader well-versed in classical synthesis

theory that the usual Foster solutionj obt_i1_ed by a partial fraction

expansion of (4._)_ is a much simpler road to obtaining the network.

Actuaily_ the total number of art _ents is not really smaller than in the

matrix case. Oua" present method_ however, has the very important additional

feature t.hat it giv s insight into the group structure of l_ssive 1-ports.

0nly a few more argument_ are needei to completely descrioe in this way all

passive l-por+s which contain a m_uimal number of reactive elements. The

partial fraction manipulations used in the Foster theory can be interpreted

as cal_lations based on the __rpup representation provide_ by the laplace

transform.

EXA/4PLE 2. Let us consider the impedance matrix

m

s2 + i s2 + i

z(.)=

k12 s k22s !"

- t2 2
s +i s +i

We wish to realize this matrix with a (lossless] reciprocal 2-port

containing a minimum number of reactive elements.

Reciprocity requires that k21 = k12. Passivity requires _as may be

easily checked using the characterization theorem)

A = kllk22 . k122 a 0,

which is popularly known as the "residue condition". In fact, the matrix of

residues of Z(.) at either pole s = + i is given 0y

K = I kll kl2 1kl2 k22
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sa_d & = det K.

Two possibilities may arise: Either & > 0 or & = 0.

The mlnim.mnnumber of reactive elements to be used is equal to the

minimum number no of state variables which are necessary and sufficient

to realize Z(') as a dynamical system (1.2u3). The number n can beO

computed with the ald of a theorem of E. G. Gilbert [Theorem ll], which

states (in the special case when Z(-) has distinct poles)

n = Z ranks of residue matrices of Z(').o

Hence n = 4 _hen Z_ > 0 and n = 2 when & = 0. It sho_uldbe noted
o O

that no is also equal to the McMillan degree of Z(.) [4].

Let us consider the case _ > O. In [1, Sect. 8] two methods were

given for constructing realizations of a given transfer function matrix.

Using Method (B), it is found that the following matrices provide a realiza-

tion ,_f Z(-):

i0] r01F(1)= ' O(1)= ' _(i)--I0 K].
z i

I 0 [-

If we let

[ °iP(_)= ' Q(1)= 0_
0 K

then the qulntu_le {F(1), G(1), H(1), P(1)' Q(1) ] satisfies (3.1-2). How-
ever, these matrices do not correspond to a network z_alization of Z('). In

order to obtain sum.ha realization, we introduce a new basis defined by

_(1)= t_(_),whe_
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l °
U =

0 K-I j

Then

r0 [01I
Referring tc the discussion of Sect. i, it is easily seen that these matrices

represent two reso_nt LC circuits in which there is cot_ling (i_presented by

the m_triceE K and K-I respectively) between bot__hthe indictors and _al_-

citors.

Since co%_pledcapacitors can always be realized by ordir_ry capaci-

tors and ideal transformers, we have proved :

Whe____n_ > 0) Z(') can be realized as an LCT network with a

minimal number of reactive elements.

By further easy manipulations of the matrices involved, it can be

shown -- as is well known [19, p. 4A7-493] -- that a single ideal transformer

will always suffice.

The question then arises whether or not the 2-port can be realized

using only coupled inductors (but not coupled capacitors) and without ideal

transformers; further, whether or not the 2-port can be realized without any

inductive oz capacitive cot_ling. The answer to both questions is in _neral

no. We shall not give the proof (straightforward) but merely state the

result:

_. A > O, Z(') _n be realized as an LC network with a minimal

number of reactive elements, wltho_t ideal transformers) and without

_y co_llnK between Inductors or capacitors if a_d onl_ if either

(i, k:m= O, .or (__t) h2 = _'n' or (tit) kZ2= k22. _se
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conditions cannot be weakened if either coupled inductors or coupled

ca__citors (but not both) are admitted.

In the first case the 2-port c_nsists of two uncom_ected 1-ports.

In the second and third case the 2_por_ can be realized as an L-section.

I don't know how well known this oasy result is. It is quite use-

ful theoretically ber_ause it shows t_hattransformerless synthesis implies

very strong constraints on Z(') in addition to nonnegatlve realness. This

fact has a direct bearing on the transformerless synthesis of HIE 1-ports

because such problems can always be reduced to the synthesis of lossless

N-ports. (Bee [8].)
i

The case A = 0 may be treated similarly.

5. Conclusions.

(i) Methods based on the Impedance concept are coordinate-free.

They do not display directly the structural properties of the realization.

(2) State-variable methods on t_ other hand, are closely related

to the structural properties of networks.

(I) Every transfer f_iction matrix admits realizations. Some of

these realizations may correspond to networks, while others may require

active elements (analog computers).

(4) Nonnegative real impedance matrices al_ys _dmlt passive

realizations, i.e. realization_ impose restrictions on F, G, H, P, Q in

addition to those implied by passivity. In all cases that these restric-

tions are known they are expressible in terms of the impedance matrix.

This is where the story stands at the moment. I would like to sug-

gest the following program for the future :

To classify all types of realizations of a _iven abstract dynamical

system and to express the realizabilit_ conditions as coordinate-free proper-

ties (such as _ -------- ssivit_, reclproclty, etc.) of abstract d_amlcal s_rstems.

1964016562-025



-23-

This problem suggests a partnership between mathematics and net-

work theory which will be intellectually exciting and practically profit-

able.

Dyr_unical systems are the building blocks of modern technology.

The resolution of the problem posed will tell us what technology is capable

of doing at present. It will also suggest developing new components to realize

that which is __nown to be possible for mathematical reasons.
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