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1. Dynamical Equations of an N-Port.

Consiier an N X N matrix function Z(-) of the complex vari-
able s. Assume that it is the impedance matrix of a finite, time-invariant,
passive RICIT (resistor, inductor, capacitor, ideal transformer, gyrator)
N-port. Then, as is well known, Z(+) bas the following properties

(1) Every element of 2(+) 18 a ratio of two relatively
prime polynomials with real coefficients.

(11) For every s with Re 8 2 0, the hermetian matrix

(1.1) z(s) + 2'(s) (' = transpose, ~ = complex conjugate)

is nonnegative definite.

If gyrators are not allowed, i.e., if the N-port is reciprocal,
then we must have also

(111) 2z(+) is symmetrical, i.e., z,,(+) =z, (-).
We shall also assume:

(iv) 2Z{w) = 0, i.e., the degree of every numeretor polynomial
in 2(*) 1s less than the degree of the correspording denoainator.

Requirement (iv) is not really restrictive but it will simplify
considerably the formulas which are to follow.

*This research was supported in part by the US Air Force under cortracts
AF 33(657)-8559 (Aeronautical Syster’ Division) and AF 49(638)-1206 (Office

of Scientific Research), and by the Mational Aeronautical and Space Adminis-
tration under Contract -71g.
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The matrix function Z(e) represents the input-output relations
of the N-port. I* is natural to examine the rvlation between this
"external" description of the N-port and the "intermal" description in
terms of dynamical or state variables. That is, how does one associate a
state with the N-port descrited in terms of 1ts impedance matrix?

This question of representation has been settled recently by the
writer (see part.cularly [1]). It twrns out that ev21y "transfer function"
mtrix 2Z(¢) which bas properties (1) and (iv), but not necessarily (ii)

and (ii1i), one may assoclate a system of vector differential equations of

the form
(1.2) dx/dt = Fx + Gu(t),
(1.3) y(t) = mx(t).

Here x, the state, is an n-vector; wu(-), the input (current) is an
N-vector, and y(-), the output (voltage), is alsc an N-vector. F, G, H

are constant linear transformations. We call (1.2 -3) a finite dimensionsl,
constant linear dynamical system [1].

If equations (1.2-3) are known, the matrix Z{s) can be written down
by inspection by taking the formal laplace transform cf (1l.2). The result is
expressed by the formula

(1.4) Z(s) = H(sI = F)'la (I = wnit matrix).

Given Z(*), the determination of F, G, and H in (1.2-3) is much
iess trivial. Some set (F, G, H} satisfying (l.4) always exists, Moreover,
there is a smallest integer n  such that relations (1.2-4) hold simultaneously.
Generally speaking, this smallest dimension n, is a complicated function of
the matrix Z(s). If n in (1.2~3) is larger than n, then the dynamical
system (1.2-3) is said to be reducible, The number n, 1is identical with the
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so=called degree of Z(+) a8 defined by McMillan {2-4]. A numerical method
o Wes given in [1]. Alternately, McMillan®s defini-
tion yleld ng via the so-cailed Smith canonical form of polynomial matricee

(51.

for machine computing n

From the mathematical point of view, equations (1l.2-3) may be viewed
as representing an abstract dynamical system defined with respect to an
abstract vector space X. To give these equations coacrete meaning, we must
choose a specific coordinate system or basis in X and express the abstract
vector x and the abstract linear transformations F, G, and H in numeri-
cal form. Once this has been done, x bhecomes an n-tuple of real numbers
anrd F, G, H become nxn, nx N, and NXn arrays (matrices) of real

numbers,

Any system (1.2-3) given in numerical formm, as just described, is
calied a realization of Z(+) (see {1]). Mathematically, the temm

' means that we pass from the abstract to the concrete (numerical)

"realization'
description. Physically, the term "realization" is motivated by the fact
(5] that any numerically given system of equation: (1.2-3) may be interpreted

as the program for an analog computer which simulates the given N-port.

Each realization corresponds to a specific choice of a coordimate
system for the state vector. Our wltimate objective is to obtain that sub
class of realizations which can be identified with a passive network, not
merely with an analog computer program.

The next problem concerns the study of the relationships between
various realizations of Z(s). This is indeed the main idea motivating the
research discussed here, The problem is clearly of a group theoretical nature.

We ask: What 1s the group of transformations which leave the properties of a

given realization invariant?

Suppose we pick two bases for representing the abstract vector x.
In the first, the vector is x described by the numerical n-tuple
t = (§l, ceey §n) and in the second it is represented by the n-tuple
A

E= (8, .. ). It is well known (7, p. 82] that £,% are related by a

nonsingular linear transformation, so that
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(1.5) T=mT¢ or 1
j=1 19

vhere T = [t14] is a constant, real, nonsingular matrix. The matrices T
J

form the general linear group.

It is convenient to abuse notation and employ the symbols x, ;(\; F,
f, ees B8lso for the n-tuples representing the vector x and matrices repre-
senting the linear transformation F «ith respect to certain specified bases,
Now if the set (F, G, H} specifies the dymamical system in the first basis,

then the set [?, 3, ®) which specifies the same system with respect to the
second basis is related to the first set by the relations

# = mrt
f=m?

which are easily derived using (1.2-3) and (1.5). (See [1].). Different
choices of bases correspond to different realizations of the same Z(+).

Therefore one would certainly expect that 2Z(e) ie invariant with respect
a change in basis. This is verified with the aid or (1.6):

Z(s)

H(sI - F)G = mr"lT(sI - F)’l'r"l'm

-1, =ta A A
f(sr - TrrY) ¢ = fi(sI - )76,

Conversely, one may ask: In what way do any two realizations of

The answer ie [1] that if they are irreducible
(n = no) , then they differ only by a choice of basis. The criterion for
irreducibility is that the triple

Z(+) differ from one another?

(F, G, H} be completely controllable and
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completely observeble [1]. Thus if two completely controllable and com-
pletely observable triples (F, G, H) and (P, G, 8} yield the same trans-
fer function matrix Z('), then they are necessarlly connected by the re-
lations (1.6). Note that this is an abstract result; in practical cases 18
may be quite difficult to find the transformation T,

We now rephrase this important fact 1n such a way &s to emphasize

its group theoretical character:

THEOREM. Any two irreducible realizations (1.23) of & transfer

function matrix Z(+) having properties (i) and (iv) are equivalent under

the general linear group.

Now if Z(+) is the impedance matrix of a passive N-port, it will
have certain other properties {namely (1i-1ii) abcve) in addition to those
needed to establish this theorem. One would therefore expect to find more
restricted types of realizatiors which are invariant with respeet to certain
subgroups of the general linear group., The determination of these "network
subgroups" is identical with the problem of studying all pos:.ble network

realizations of a given Z(*), which is also called the problem of network

equivalence, An important advantuge of the group theoretic approach we wish
to explore here is that it provides a unified way of studying the probleam of
synthesis by different classes of zlements. For instance, the RICT and
RICIT sy~thesis problems can be stulied simultaneously. (See (&].)

It is important to bear in mind the conceptual distlnciion between
the "impedance" transfer function and the "state variable" points of view

in netw~rk theory.

Transfer and impedance functions are coordimate~free notions. They
are most useful in studying properties of networks regardless of their in-
ternal structure. This is the deeper reason why existence criteria (such as
positive realness) are stated more convenieatly in terms of Z(+) then in
terms of the triple (F, G, H}. This observation is not confined to network
theory [9 - 101].
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On the other hand, dynamical equations (1l.2-3) alvays invclve coor-
dinates. These equations are most useful in the detailled study of the
internal structure of a network. Sucn considerations 'ave been generally
absent from classical network theory, which may explein in nart the diffi-

culties encountered in resolving nztwork equivalence problems,

The group-theoretical apnroach suggested here is completely analo-
gous to the famous Erlanger Programm of Felix Flein. There have never been
any systematic effort to apply Klein's ideas co network theory, as far as
the writer is aware. It should be pointed out, however, that the work on
network equivalence of Cauver [9, see particularly pages xviii, 49, and
Chapter 10] was certainly a conscious stiep in the same direction. Much more

can be done along these lines.

2. Restrictions Due the Passivity and Reciprocity.

The fact that Z(°) represents a rassive N-port imposes certain re-
strictions on the matrices F, G, and H. These restrictions are the counter-
part of properties (ii=iii) of the impedance matrix.

First of all it is necessary to identify the components Xy of the
state n-tuple x witb physical variables in the network. We adopt the follow=

ing convention, which is both standard and convenient [12].

Let us consider an N-port which contaius n inductors and

nc =N - . capacitorse Then we define

»
i

current through i~th inductor, when 1 =1, ..., nL;

(2.1)

*
]

voltage across ie-th capacitor, when ny + 1, eaey, T

Assuming for a moment that none of the inductors ar~ coupled with
each other, and the same for the capacitors, it follows fram linearity that
the dynamical equations of the network may be written in the form
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n N
Ldx,/dt = Za,x + £ b ,J,(t) 1=1, «o., n
171 o R 7T L
(2.2) n N
dt = + = + oee
C de J/ kflajkxk [flb ; lJt(t) J =4, , n
n
\ Ul(t) = k_;l hlkxk(t), L =1, ..., N,

The Jl(t) are the currents entering the ports and the U‘(t) are the volt-

ages across the ports.

To derive the numbers 8y and bi (Yo may replace, for an instant,

an inductor by a current source and a capacitor by a voltage source. We then
obtain the following interpretation.

Let 1,, i, be integers velonging to (1, nL], Jp» J, 1integers be-

longing to [n.L, nj, and f an integer belonging to [1, Nl.

voltage across il-'th inductoer when all capacitors

are short circuited, all norts and all inductors

a

1112

save the 12-th are opcn circulted, and the iz-th

inductor is replaged by & unit current source.

= voltage across the 1l—th inductor when all ports
and all inductors are open circuited, all capacitors
,je-th are short circuited, and the je-th

capacitor 18 repln-ed by a unit voluage source.

save the

b = voltage across the il-th inductor when ail capacitors
are short circuited, all inductors are open circuited,
all ports save the (-=th are open circuited, and a unit

current source is connected across with (f-th port.

The other quantities are defined analogously.
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It is clear that the matrices A and R depend only on that
mart of the network which contains the resistors and ideal transformers.
Partioning these matrices according to the numbering scheme intrcauced
above, we can easily see wbhat restrictions are imposed by passivity and/or

reciprocity. If we write

}
A 1 ¢
iy 1 2
(2.3) A = - - w|e - -
t
~ ] »
Y1 2
L 1 -l

then Al bas the dimension of resistance, A2 bas the dimensjon cf con-

ductance, while Cl and 02 are dimensionless.
Passivity implies that A, and A, are nonpositive (but not
necessarily symmetric) matrices i.e., their quedratic forms are nonpositive.

Moreover, the quadratic fomm

J

must be identically O, 1i.e., 02 = - Ci.

Reciprocity implies that A

necessarily nonpositive).

; 8xd A, are symmetric (but not

As far as R and H are concerned,
5 g
32 HQ

If B, £ 0 then Z(2) # 0 and assumption (iv) of the previous section is

violated., Hl = 0 for the same reason. Pas. vity requires that HEB'r_‘ be

nonnegative definite. Reciprocity requires B2 = Hé
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After removing all inductors and capacitors the N-port becomes an
(N + n)-port. This (N + nj-port does not necessarily possess either an
impedance or admittance matrix because there may be open circuits or short
circuits at certain ports. In such cases, one adopts & suitable mixed
impedance-admittance description of the last n ports. We do not wish to
dwell upon the complications -~ all trivisal -- which result in such cases.

Suppose we write the energy stored in the N-port as

1 ] L > 1 12 2
E=§x'Px=-,§ Lixi +§ p CJXJ.
1=1 Jrn 41

Then equations (2.2) take the simple form

(2.2') ' Pdx/at = Ax + BJ(t), U(t) = Hx(t).

These equations are vaiid even if there is coupling between the inductors and
capacitors. Thus in general P will hawve the forn

|
L 1 0
{
(2.5) P= -“‘T"- .
0O , ¢C
'

The off-diagonal terms of P &re (O Dbecause in conventioncl networks there

is no coupling between electric and magnetic finlds. Since the stored epergy
must be a positive definite quadratic form, we assume that L and C are
positive definite matrices., Reciprocity requires that they be symmetrical
watrices. In the conventional RICT cases L 15 symmetric, positive definite,
while C 1is a matrix with positive entries on the diagonal and zervs elsewvhere,
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The case when I 1is wmerely nonnegative definite indicates the pre-
sence of ideal transformers. In ihis case the number of state variables

is too large. We shall not discuss the resulting complicaticns.

If the dynamical equations (2.2') of the N-port are reducible, i.e.,
may be replaced by a smller set of equations having the same impedance
mtrix 2Z, then the network contains dynamical modes which are not speci-
fied by the impedance matrix 2 but arise solely as a result of the syn-
thesis procedure. For instance, the Darlington and che Bott-Duffin proce-~
dures introduce such extraneous modes, Although the presence of such addi-
tional modes may be necessary to carry out certain t&pes of synthesis
procedures, in this raper we shali be concerned only with the irreducible
case., In other words, it will always be assumed that the N-port always

contains & minimal number n0 of reactive elements.

3. Characterization of Passivity.

Now we shall state a relation between the impedance 2 and the state
variable description of an N-port. This relation was discovered in the
course of studying the so-called Lur'e problem of construction Lyapunov
functions for dynamical systems which are linear save for a single nonlinear
element [9].

The result to be stated below is more general than the Main lemma in
[9], in that we admit N X N rather than 1 X 1 impedance matrices and we
drop the assumption that all eigenvalues of F have negative real parts.
On the other hand, we will assume here, as a matter of convenience, that
Z(») = 0. This is an unessential restriction which was not needed in tke
Main Lemma of [9]. For a full treatment of the general problem, including
proofs, see [13, 1h].

CHARACTRIZATION CF PASSIVITY THEOREM. Let Z(-) be an N X N matrix
of rational functions of the complex variable s, with 2(w) = 0. ILet
(F, G, H be 4 triple suck that (1.2-3) is an irreducible realizetion of
Z(+). let ¥(y) be a continuous p-vector function of the p-vector y such
that ¥(0) =0 and y'¥(y) 20 for all .
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Then the following statements are equivalent:

(I) %(*) is nonnegative real, i.e., Re s 2 0 implies
Z(s) + 2'(s) = nonnegative definite hermetian matrix.

(II) There exists a symmetric, positive definite matrix P and a

symmetric, nonnegative definite matrix Q such that

(3.1) PF + F'P

]

- 2Q,

(3.2) PG = H.

(A matrix F satisfying (3.1-2) cannot have an eigenvalue with positive
reul part; in its Jordan form all imaginary eigenvailues are contained in

1 X 1 blocks; the null space of the matrix Q is necessarily contained in
the eigenspace of F sparned by the eigenvectors corresponding to imaginary
eigenvalues.)

(IIT) V =x"Px is a Lyapunov function for the autonomous dynamical
system dx/dt = Fx - G¥(Hx) such that V(x) = O.

Iet us give an indication of the proof. (II) implies (I) by direct
substitution. Given (I), the nonnegative real character of Z(iw) allows
it to be factored as Z(iw) + Z'(-iw) = W'(iw)W(iw). Every such factoriza-
tion gives rise toa Q. The irreducibility of the realization is then
utilized to verify that (3.1-2) hold. (II) implies (III) because

V(x) = x'PFx -~ 2x'G'P¥(Hx)

= -2 +y"2(y)iso0

by (3.1-2). Finally, (III) implies (I) by direct computation.
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Remarks. (1) 1In a 1958 paper, Desoer [15] pointed out that at
that time the stablility of passive nonrecirrocal networks has not yet been
proved and gave an srgument showing that all such networks are, in fact,
(Lyapunov) stable., This result is now confirmed in the strongest possible
way. Since the nonnegative realness of Z(*) (as stated above, i.e., not
requiring Z(¢) = Z'(+)) 1is a necessary condition for realizing a paesive
RICIT' N-port, it is clear from the parenthetical remark in (II) that F
carnot have eigenvalues with positive real parts, nor can it hawve solutions
of tke type tfcos (@t +q), k > 0.

(2) For networks, V = x'Px can always be identified with the
stored energy in the inductors and capacitors. Hence (IXI) shows that in
unterminated passive networks (¥ = Q) the emergy is a nonincreasing func-
tion of time. For arbitrary passive resistive terminations, which may be
elther linear or nonlinear, the same conclusion holds. In the nonlinear case
this result represents a considerable improvement over what was known before.
(To my knowledge, the previous best general result here is that of Duffin
[16].)

The charscterization theorem expresses facts which are uswally taken
for granted from an intuitive physical point of view. As s result, the
average engineer may be tempted to jump to the conclusion that nothing new has
been dore. But to do this would be a gross misunderstanding of the processes
cf scientific research. The thecrem ir & more precise and more general
characterization of passivity than was heretofore avallable. The precision
and the generality of this result in turn leads to deep insight into problems
of network synthesis [8, 14], which can now ve st 1ied with a simplicity and
explicitness that was impossible previously.

This theorem is a very convincing additional piece of evidence that
passivity and network synthesis are intimately related. In [8] I sbhall pre-
sent some preliminary results which show that the structural properties of
the class of all networks which realize a given impedance function Z(e)
are in 1-1 correspondeuce witk certain algebraic invariants of Z(+).
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4. Applications.

We shall illustrate the usefulness of the characterization theorem
and the group theoretic ideas related to it by two classical exampless
(1) IC l-port symthesis according to Foster, and (11i) synthesis of lossless
2-ports.

EXAMFIE 1. We wish to prove that

A necessary and sufficient condition in order that the scalar impe ~
dence function z(°) be realizable as the l-port shown in Fig. 1 is that

(1) z(*) 4is nonnegative real and

(11) all poles of z(+) are imaginary.

Recessity: If the state variables for the network are assigned as
shown in Fig. 1, it follows by inspection that the A, B, H, and P
matrices are

)

o

L] L
3 J e
14 (& I |
3 1
1 ]
=~ 1
Haa il S
’
R e L
]
]
3

- o

There are r 2 X 2
blocks on the diagonal

]

(%.1) A

»
-——v.‘-
[}

o e m e W e

o
-

=

- wr M e o OV o W oy wgp wmm =
-

e ———p -~

!
L_O

(4.2) B s

i




(4.3) H=[1%0 1} ...10 1]
r ! | ] .
c ! ! l
B R
' l
VL 0, I
| !
0 c |
(b.k) P = -.'l--_}.;_-_,_-_-,
{ '.. l
| ‘_l
--l----|-_-:----
! ] L 0
. : tr
t i | c
| 0
» i : | r__}

It is clear that the quintuple

F=P2, G=P'B, H=H P=P, Q=0

satisfies (3.1-2). Hence the impedance function of the l-port, which is
glven by

(4.5)  z(s) = <=+ %

s 2
—59 =1/LC
cs @ *= 5. 2 Wy = /LGy
0 k-le(e +a>k)

is a nonnegative real function.
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Sufficiency: Suppose that =z(*) 18 nonnegative real. Then re-
lations (3.1-2) are satisfied. If, in addition, all poles of z(*) are ima-
ginary, then Q 1in (3.1) is necessarily zero.

We shall now carry out a series of changes of basis which will
eventually exhibit the matrices A=PF, B=PFG, H=H, and P=P in the
form (4.1-4), after which the existence of tbe network shown in Fig. 1 is
obvious by inspection.

Step 1. We pick a basis that P(l) = I. Then by (3.1) F(l) = - le).
This is always possible because under & change of basis (1.5) we have

(1.6') P = T'BT

Since. P 1s positive definite, it can always be written as P = T'IT, T
nonsingular, so that ?= P(l) = I.

Ste + Ve pick a second basis which leaves P invariant
SLep <
(P(E) = I) but transforms F(l) into the canonicai form
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This is always possible because [17] every skew symmetric matrix can be
transformed into the canonical form (4.6) by means of an orthogonal
transformation. Note that the element O in the upper left-hand corner

of F(E) corresponds to the eigenvalue O (if F(l) tappens to have that
eigenvalue), while the 2 X 2 blocks along the diagonal correspond to the
eigenvalues + 1w, k=1, ..., T. (Since z(+) bas only imaginary poles,
F has only imaginary eigenvaluess by nonnegative realness all eigenvalues

must be simple. Thus F(z) is as it should be.)

In tke basis (2), the column vectors B, H' have the fom

- -
B()
Y
By
NORRORET IR i
s,
ﬁI‘
. -

Since the triple (F, G, H'} must be irreducible and therefore completely
controllable and completely observable if (II) of the characterization theorem
1s to hold, 1t is easily verified that o >0 and ai + 512( > 0,

k = l, seey r.

Step 3. Any proper (det = 1) orthogonal transformation (rotation)
applied to the 2 X 2 matrix
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leaves it invariant. We apply r such rotations corresponding to the
r blocks in F, 1in such a way that the vectors

e

kzl, sesy T

P

in B and H' are rotated into the wvectors

’ k=l’ veey Te

T
| 'k

By the comment made at the end of the preceding paragraph we know that
= o2 + /% - - -
Tk = ak + Bk % 0. Thus F(}) = (2), P(5) = P(2) = T and

G) =By = |- e

Step 4. Now we obtain change to s basis where A, B and H have
only O, 1, -1 as elements. Fortunately this can be accomplished with the
aid of a diagonal matrix., If x(3) = Ax(h), where A 1s diasgonal, then

Py = (st = 25



=2 8.

-1
By™ PGy = ME(z)M "G(z) = AB(5)

and
1
A = P.,.F = AP A F A= AA A
(L) (L))" (4) (3) (3) (3)
We choose
B ! ! I 7
l/bo! ! 1
-------- '-n - —‘- - s e
: ) )
l T /0y O: !
i )
LM
\ | '
[ x 1 .
A= ! ) 1
- - -: ----- 6- - -'— - - -t -
1 : ;Yr/h&- 0
‘ 1 ‘
{ I
\ \ {O l/‘(r
— ' ‘ . o'
It Ie easily checked that A(u), B(u), H(u) assume the form (4.1 - 4,7),
If we let

C, = 1/_(30,
Ck=l/rk, k=l, .oy I'_;
L, = Tk/&k’ K=1, «o., T;

then the same can be said also about P(h)'

The proof is completed.
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It may appear to the reader well-versed in classical synthesis
theory that the usual Foster solution, obtained by a partial fraction
expansion of (4.5), is a much simpler road to obtaining the network.
Actually, the total nuwber of arr ments is not really smailer than in the
matrix case. Ouwr present wmethod, however, has the very important additional
feature that it giv & insight into the group structure of passive l-ports.
Only & few more argumentr are needel vo completely descrive in this way all
passive l-ports wihich contain a minimal number of reactive elements. The
partial fraction manipuiaticns used in the Foster theory can be interpreted

as calcstions based on the group representation providec by the laplace

transform.

EXAMPIE 2, Let us consider the impedance matrix

r_}_{}_l‘s__ leS
82 + 1 s? + 1
Z(s) = .
klgs kggs
LR 8% + 1

We wish to realize this matrix with a (locsless) reciprocal 2-port

containing & minimum number of reactive elements.

o1 = Ko

easily checked using the characterization theorem)

Reciprocity requires that k Passivity requires (as may be

A=k k. -k_20,

which is popularly known as the "residue condition". 1In facl, the matrix of

residues of Z(+) at either pole s =+ i 1is given vy
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and A = det K.
Two possibilities may arise: Either A >0 or A = 0.

The ainimum number of reactive elements to be used is equal to the
minimum number n, of stete variables which arz necessary and sufficient
to realize Z(°) as a dynamical system (1.,2-3). The number n, can be
computed with the aid of a theorem of E. G. Giibtert [Theorem 11}, which
states (in the special cese when Z(*) has distinct poles)

n = I ranks of residue matrices of Z().

Hence n = L when A >0 and n, =2 when A = 0. It should be noted
that n  is also equal to the McMillan degree of () [l

Let us consider the case A >0, In [1, Sect. 8] two methods were
given for constructing realizstions of a given transfer function matrix.
Using Method (B), it is found that the following matrices provide a realiza-
tion of Z(+):

F(l)= ’ G(l) = ) H-(l) = ,‘:O K]-

If we let

Ko-\

Pay = > {(1) =0

then the quintuple {F(l)’ G(l)’ H(l)’ P(l)’ Q(l)] satisfies (3.1-2). How-
ever, these matrices do not correspond to & network realization of 2Z(<). 1In
order to obtain such a realization, we introduce a new basis defined by
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I 0
U= .
0 K-lJ
Then
[o -1 0 K 0
Ay = 1 By T > Py T al
I o I Lo K

Referring tc the discussion of Sect. 1, it is easily seen that these matrices
represent two resonant ILC circults in which there is coupling (represented by
the matrices K and K- respectively) between both the inductors and capa-
citors.

Since coupled capacitors can always be realized by ordinary capaci-

tors and ideal transformers, we have proved:

When A >0y Z(*) can be realized as an LCT network with a
minimsl number of reactive elements.

By further easy manipulations of the watrices involved, it can be
shown -- as is well known (19, p. B47-453] -~ that a single ideal trensformer
will always suffice.

The question then arises whether or mot the 2-port can be realized
using only coupled inductors (but not coupled capacitors) and without ideal
transformers; further, whether or not the 2-port can be realized without any
inductive oi capacitive coupling. The answer to both questions is in general
no, We shall not give the proof (straightforward) but merely state the
result;

Whep A >0, 2(+) can be realized as an IC network with a minimal
number of reactive elements, without jdeal transformers, and without

any_coupling between inductors or capacitors if and only if either
(1: ki,=0, or (11) k), = Kjqy OF (111) kip = Koo These
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conditions cannot be weakened 1f either coupled inductors or coupled
capacitors (but not both) are admitted.

In the first case the 2-port cunsists of two unconnected l-ports.
In the second and third case the 2-port can be realized as an L-section.

I don't know how well known this ~asy result is. It is quite use-
ful theoretically because it shows that transformerless synthesis implies
very strong constraints on Z(*) 1in addition to nonnegative realness. is
fact has a direct bearing on the transformerless synthesis of RIC l-ports
because such problems can always be reduced tc the synthesis of lossless
N-ports. (See [8].)

The case A = 0 may be treated similarly.

5. Conclusions.

(1) Methods based on the impedance concept are coordinate-free.
They do not display directly the structural properties of the realization.

(2) State-variable methods on tie other hand, are closely related
to the structural properties of networks.

(?) Every iransfer function matrix admits realizations. Some of
these realizations may correspond to networks, while otbers may require

active elements (analog computers ).

(4) Nonnegative real impedance matrices always udmit passive
realizations, i.e. realizations impose restrictions on F, G, H, P, Q 1in
addition tco those implied by passivity. In all cases that these restric-
tions are known they are expressible in terms of the impedance matrix.

This is where the story stands at the moment, I would like to sug-
gest the following program for the future:

To classify all types of realizations of a given abstract dynamical
system anl to express the realizability conditions as coordinate-free proper-

ties (such as passivity, reciprocity, etc.) of abstract dynamical systems.
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This problem suggests a partnership between metbematics and net-
work theory which will be intellectuslly exciting and practically profit-
able,
Dynamical systems are the building blocks of modern technology.
The resolution of the problem posed will teli us what technology is capable
of doing at present. It will also suggest developing new components to realize
that which is known to be possible for mathematicel reasons.
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